luogu1024 一元三次方程求解
题目大意
已知一元三次方程\(ax^3+bx^2+cx+d=0\):
- 有且只有3个根
- 对\(\forall x, x\in[-100,100]\)
- 对\(\forall x_1,x_2,|x_1-x_2|\geq1\)
- 定理:令\(f(x)=ax^3+bx^2+cx+d\),则\(f(l)f(r)<0\Leftrightarrow \exists x\in [l,r],使得f(x)=0\)
思路
从拿到题开始我们很容易想到二分。二分求点都是求一个点,包含该点的区间具有某一特定性质,不包含这个点的区间不具有这一特定性质。“区间的特定性质”便是性质4。但是怎么保证区间中只有一个点呢?由性质3可得每个长度为1的区间最多有一个解。因此我们对于每个满足性质4的长度为1的区间二分即可。
注意
- 长度为1的区间内的函数图象不一定单调,所以\(f(\frac{l+r}{2})\)不具有任何代表性。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const double EPS = 0.0001;
double A, B, C, D;
double Bsearch(double l, double r, double k, double eps, double (*GetVal)(double, double))
{
double mid;
//printf("l %.2f r %.2f\n", l, r);
while(r - l > eps)
{
//printf("l %.2f r %.2f\n", l, r);
mid=(l+r)/2.000;
if(GetVal(l, mid) < k)
r = mid;
else
l = mid;
}
return mid;
}
double Func(double x)
{
return A * x * x * x + B * x * x + C * x + D;
}
double GetVal(double l, double r)
{
return Func(l) * Func(r);
}
int main()
{
cin>>A>>B>>C>>D;
int ansCnt = 0;
double ans[4];
for(double l = -100; l <= 99; l += 1)
{
double r = l + 1;
//printf("l %.2f r %.2f\n", l, r);
if(Func(l) == 0)
ans[++ansCnt] = l;
else if(Func(l) * Func(r) < 0)
{
//printf("ok\n");
ans[++ansCnt] = Bsearch(l, r, 0, EPS, GetVal);
}
}
//printf("%.2f %.2f %.2f\n", ans[1], ans[2], ans[3]);
//sort(ans+1, ans + 3 + 1);
for(int i=1; i<=ansCnt; i++)
printf("%.2f ", ans[i]);
return 0;
}
luogu1024 一元三次方程求解的更多相关文章
- NOIP2001 一元三次方程求解
题一 一元三次方程求解(20分) 问题描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范 ...
- Vijos P1116 一元三次方程求解【多解,暴力,二分】
一元三次方程求解 描述 有形如:ax^3+bx^2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之 ...
- [NOIP提高&洛谷P1024]一元三次方程求解 题解(二分答案)
[NOIP提高&洛谷P1024]一元三次方程求解 Description 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约 ...
- 洛谷——P1024 一元三次方程求解
P1024 一元三次方程求解 题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-10 ...
- P1024 一元三次方程求解
P1024 一元三次方程求解 #include<cstdio> #include<iostream> #include<algorithm> using names ...
- 洛谷P1024 一元三次方程求解
P1024 一元三次方程求解 题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-10 ...
- Codevs 1038 一元三次方程求解 NOIP 2001(导数 牛顿迭代)
1038 一元三次方程求解 2001年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题目描述 Description 有形如:ax3+b ...
- luogu【P1024 一元三次方程求解】题解
题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差 ...
- NOIP2001 一元三次方程求解[导数+牛顿迭代法]
题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差 ...
随机推荐
- C - Arrival of the General
Problem description A Ministry for Defense sent a general to inspect the Super Secret Military Squad ...
- 【Codeforces】Codeforces Round #373 (Div. 2)
B. Anatoly and Cockroaches Anatoly lives in the university dorm as many other students do. As you kn ...
- Java_Web之分层架构
当我们把业务处理的代码与JSP代码混在一起,不易于阅读,不易于代码维护,这就需要分层. 分层模式 1.分层模式是最常见的一种架构模式 2.分层模式是很多架构模式的基础 分层 将解决方案的组件分隔到不同 ...
- Ubuntu安装中文语言包
使用Ubuntu 默认的界面感觉不习惯,于是安装KDE界面. 1.安装kde 使用命令行: sudo apt-get install kubuntu-desktop 安装后发现不能使用中文, 在 se ...
- HDU_1269_tarjan求强连通分量
迷宫城堡 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- nginx设置跳转https
在监听80端口的内部,添加一句代码:rewrite ^(.*)$ https://$host$1 permanent;
- 【VIP视频网站项目二】搭建爱奇艺优酷腾讯视频官网首页轮播图效果及实现原理分析
这个是实现的效果,基本上轮播效果和主流网站的一致,但是我也在上面优化了一些效果, 可以在线预览效果:https://vip.52tech.tech/ 目前项目代码已经全部开源:项目地址:https:/ ...
- 多文件编程(day13)
多文件编程时一个文件里可以包含多个函数, 一个函数只能属于一个文件 多文件编程的步骤 .把所有函数分散在多个不同的源文件里 (主函数通常单独占一个文件) .为每个源文件编写一个配对的以.h作为 扩展名 ...
- 当svn检出项目检出一半时停止,如何继续检出
1.当svn检出项目时,发现中断,又不想重新检出可以在已检出的项目目录下右键 2.然后点击 之后直接update你的项目就可以了
- 面试官问你如何解决web高并发这样回答就好了
所谓高并发,就是同一时间有很多流量(通常指用户)访问程序的接口.页面及其他资源,解决高并发就是当流量峰值到来时保证程序的稳定性. 我们一般用QPS(每秒查询数,又叫每秒请求数)来衡量程序的综合性能,数 ...