[POJ 1639] Picnic Planning
[题目链接]
http://poj.org/problem?id=1639
[算法]
首先,我们可以用深度优先遍历求出1号节点去除后有几个联通块
设共有T个联通块,若T > K则无解,否则 :
求出这些联通块的最小生成树,得到一棵最小T度生成树,我们尝试改动(K - T)条边,使得答案变得更小,具体过程如下 :
枚举所有与1相连的边,若这条边不在当前的生成树中,我们用广度优先搜索求出生成树上1号节点到该条边的节点中最长的边,用这条边的权值减去枚举边的权值即为生成树权值和变小了多少,求出这个变小的最大值
如果这个最大值大于0,将这个最大值对应的边从生成树中删除,并加入新的边,否则退出
重复以上过程(K - T)次,即可
[代码]
#include <algorithm>
#include <bitset>
#include <cctype>
#include <cerrno>
#include <clocale>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <limits>
#include <list>
#include <map>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <utility>
#include <vector>
#include <cwchar>
#include <cwctype>
#include <stack>
#include <limits.h>
using namespace std;
#define MAXN 1010
struct Edge
{
int u,v,w;
} e[MAXN],edge[MAXN][MAXN];
int i,j,n,w,k,tot,block,ans,mx;
int val[MAXN],size[MAXN],fa[MAXN],p[MAXN],belong[MAXN];
bool visited[MAXN],flag[MAXN];
int mst[MAXN][MAXN];
map<string,int> mp;
string u,v;
vector< int > a[MAXN];
pair<int,int> ps,new_e,tmp; inline bool cmp(Edge a,Edge b)
{
return a.w < b.w;
}
inline int get_root(int x)
{
if (fa[x] == x) return x;
return fa[x] = get_root(fa[x]);
}
inline void dfs(int u)
{
int i,v;
visited[u] = true;
belong[u] = block;
for (i = ; i < a[u].size(); i++)
{
v = a[u][i];
if (e[v].u == u && e[v].v != && !flag[v])
{
flag[v] = true;
edge[block][++size[block]] = e[v];
dfs(e[v].v);
} else if (e[v].v == u && e[v].u != && !flag[v])
{
flag[v] = true;
edge[block][++size[block]] = e[v];
dfs(e[v].u);
}
}
}
inline void kruskal(int id)
{
int i,su,sv;
static int s[MAXN];
for (i = ; i <= n; i++) fa[i] = i;
sort(edge[id] + ,edge[id] + size[id] + ,cmp);
for (i = ; i <= size[id]; i++)
{
su = get_root(edge[id][i].u);
sv = get_root(edge[id][i].v);
if (su != sv)
{
ans += edge[id][i].w;
mst[edge[id][i].u][edge[id][i].v] = edge[id][i].w;
mst[edge[id][i].v][edge[id][i].u] = edge[id][i].w;
fa[su] = sv;
}
}
}
inline pair<int,int> bfs(int s)
{
int i,cur,l,r,now,mx;
static bool visited[MAXN];
static pair<int,int> q[MAXN];
static int pre[MAXN];
bool found = false;
pair<int,int> res;
memset(visited,false,sizeof(visited));
q[l = r = ] = make_pair(s,);
visited[s] = true;
pre[] = -;
while (l <= r)
{
cur = q[l].first;
for (i = ; i <= n; i++)
{
if (visited[i]) continue;
if (!mst[cur][i]) continue;
visited[i] = true;
q[++r] = make_pair(i,mst[cur][i]);
pre[r] = l;
if (i == )
{
found = true;
break;
}
}
if (found) break;
l++;
}
if (!found) return make_pair(,);
now = r; mx = ;
while (pre[now] != -)
{
if (q[now].second > mx)
{
mx = q[now].second;
res = make_pair(q[pre[now]].first,q[now].first);
}
now = pre[now];
}
return res;
}
int main()
{
cin.tie(0);
cin >> n;
mp["Park"] = ;
tot = ;
for (i = ; i <= n; i++)
{
cin >> u >> v >> w;
if (!mp[u]) mp[u] = ++tot;
if (!mp[v]) mp[v] = ++tot;
e[i] = (Edge){mp[u],mp[v],w};
a[mp[u]].push_back(i);
a[mp[v]].push_back(i);
}
scanf("%d",&k);
visited[] = true;
for (i = ; i <= n; i++)
{
if (e[i].u == && !visited[e[i].v])
{
block++;
dfs(e[i].v);
}
if (e[i].v == && !visited[e[i].u])
{
block++;
dfs(e[i].u);
}
}
if (block > k)
{
printf("-1\n");
return ;
}
for (i = ; i <= block; i++) kruskal(i);
memset(val,0x3f,sizeof(val));
for (i = ; i <= n; i++)
{
if (e[i].u == && e[i].w < val[belong[e[i].v]])
{
val[belong[e[i].v]] = e[i].w;
p[belong[e[i].v]] = e[i].v;
} else if (e[i].v == && e[i].w < val[belong[e[i].u]])
{
val[belong[e[i].u]] = e[i].w;
p[belong[e[i].u]] = e[i].u;
}
}
for (i = ; i <= block; i++)
{
ans += val[i];
mst[][p[i]] = val[i];
mst[p[i]][] = val[i];
}
for (i = ; i <= k - block; i++)
{
mx = ;
ps = new_e = make_pair(,);
for (j = ; j <= n; j++)
{
if (e[j].u == && !mst[][e[j].v])
{
tmp = bfs(e[j].v);
if (mst[tmp.first][tmp.second] - e[j].w > mx)
{
ps = tmp;
new_e = make_pair(e[j].v,e[j].w);
mx = mst[tmp.first][tmp.second] - e[j].w;
}
}
if (e[j].v == && !mst[][e[j].u])
{
tmp = bfs(e[j].u);
if (mst[tmp.first][tmp.second] - e[j].w > mx)
{
ps = tmp;
new_e = make_pair(e[j].u,e[j].w);
mx = mst[tmp.first][tmp.second] - e[j].w;
}
}
}
if (mx == ) break;
ans -= mx;
mst[][new_e.first] = new_e.second;
mst[ps.first][ps.second] = ;
}
printf("Total miles driven: %d\n",ans); return ; }
[POJ 1639] Picnic Planning的更多相关文章
- POJ 1639 Picnic Planning 最小k度生成树
Picnic Planning Time Limit: 5000MS Memory Limit: 10000K Total Submissions:11615 Accepted: 4172 D ...
- POJ 1639 Picnic Planning:最小度限制生成树
题目链接:http://poj.org/problem?id=1639 题意: 给你一个无向图,n个节点,m条边,每条边有边权. 让你求一棵最小生成树,同时保证1号节点的度数<=k. 题解: 最 ...
- POJ 1639 Picnic Planning(最小度限制生成树)
Description The Contortion Brothers are a famous set of circus clowns, known worldwide for their inc ...
- poj 1639 Picnic Planning 度限制mst
https://vjudge.net/problem/POJ-1639 题意: 有一群人,他们要去某一个地方,每个车可以装无数个人,给出了n条路,包含的信息有路连接的地方,以及路的长度,路是双向的,但 ...
- poj1639,uva1537,uvalive2099,scu1622,fzu1761 Picnic Planning (最小限制生成树)
Picnic Planning Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 10742 Accepted: 3885 ...
- POJ1639 - Picnic Planning
原题链接 Description 给出一张个点的无向边权图并钦定点,求使得点的度不超过的最小生成树. Solution 首先无视掉与相连的所有边,原图会变成若干互不连通的个块.对每个块分别求MST,再 ...
- K度限制MST poj 1639
/* k度限制MST:有一个点的度<=k的MST poj 1639 要求1号点的度不超过k 求MST 我们先把1号点扔掉 跑MST 假设有sum个连通分支 然后把这sum个分支连到1上 就得到了 ...
- 【POJ 1639】 Picnic Planning (最小k度限制生成树)
[题意] 有n个巨人要去Park聚会.巨人A和先到巨人B那里去,然后和巨人B一起去Park.B君是个土豪,他家的停车场很大,可以停很多车,但是Park的停车场是比较小.只能停k辆车.现在问你在这个限制 ...
- Picnic Planning POJ - 1639(最小k度生成树)
The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible abil ...
随机推荐
- (转)Vue 爬坑之路(一)—— 使用 vue-cli 搭建项目
vue-cli 是一个官方发布 vue.js 项目脚手架,使用 vue-cli 可以快速创建 vue 项目,GitHub地址是:https://github.com/vuejs/vue-cli 一. ...
- js---html元素操作
思路:创给节点添加一个元素:步骤: 1:创建元素节点 2:创建文本节点 3:将该文本添加到元素上 4:将该元素追加到其他元素上 appendChild() 方法,将新元素作为父元素的最后一个子元素进行 ...
- hibernate_07_单表操作_增删改操作
首先,创建类对象 package com.imooc.hibernate; public class Address { private String postcode; //邮编 private S ...
- 三维重建5:场景中语义分析/语义SLAM/DCNN-大尺度SLAM
前言: 在实时/非实时大规模三维场景重建中,引入了语义SLAM这个概念,参考三维重建:SLAM的尺度和方法论问题和三维重建:SLAM的粒度和工程化问题 .大规模三维场景重建的尺度增大,因此相对于整个重 ...
- 前端面试题总结 -vue
1.active-class是哪个组件的属性? vue-router模块的router-link组件. 2.嵌套路由怎么定义? 在 VueRouter 的参数中使用 children 配置,这样就可以 ...
- Arrays工具类的使用
1.包: java.util 导包 2.此类包含用来操作数组(比如排序和搜索)的各种方法 特点: 该类中的方法都是静态方法,所以可以直接使用类名.方法名(实参)调用 3.查看成员方法: public ...
- Eclipse(含STS)安装插件/软件、更新
安装方式 Eclipse安装插件的三种方式 直接复制安装 离线下载好插件,通常去这个插件的官网去找,就是在线安装的地址?如testng可以去http://beust.com/eclipse即http: ...
- vue中用v-for循环出出来的div下面的span不给宽度也能相对于div居中
效果图 1.html <div> <div v-on:mousemove="dataDetails($event, item)" v-on:mouseleave= ...
- Linux:只复制文件权限和所有者
在Linux上,怎么把一个文件的<权限和所有者>赋给另一个文件呢? chown命令可以设置所有者和用户组:chmod可以设置文件的权限.这两个命令都支持使用另一个文件做为引用(RFILE) ...
- Windows下Jupyter notebook 修改默认打开(工作、保存)文件夹(路径)
今天晚上兴致一起突然想看看我写了那么多的ipynb文件都去哪了 首先查了一下,应该是都默认保存到 C:\Users\芩溪儿 路径下了 然后我就想,我是不是得改改啊,总在那跟别的文件夹在一起总 ...