caffe中lenet_train_test.prototxt配置文件注解
caffe框架下的lenet.prototxt定义了一个广义上的LeNet模型,对MNIST数据库进行训练实际使用的是lenet_train_test.prototxt模型。
lenet_train_test.prototxt模型定义了一个包含2个卷积层,2个池化层,2个全连接层,1个激活函数层的卷积神经网络模型,模型如下:
name: "LeNet" //神经网络的名称是LeNet
layer { //定义一个网络层
name: "mnist" //网络层的名称是mnist
type: "Data" //网络层的类型是数据层
top: "data" //网络层的输出是data和label(有两个输出)
top: "label"
include { //定义该网络层只在训练阶段有效
phase: TRAIN
}
transform_param {
scale: 0.00390625 //归一化参数,输入的数据都是需要乘以该参数(1/256)
//由于图像数据上的像素值大小范围是0~255,这里乘以1/256
//相当于把输入归一化到0~1
}
data_param {
source: "D:/Software/Caffe/caffe-master/examples/mnist/mnist_train_lmdb" //训练数据的路径
batch_size: 64 //每批次训练样本包含的样本数
backend: LMDB //数据格式(后缀)定义为LMDB,另一种数据格式是leveldb
}
}
layer { //定义一个网络层
name: "mnist" //网络层的名称是mnist
type: "Data" //网络层的类型是数据层
top: "data" //网络层的输出是data和label(有两个输出)
top: "label"
include { //定义该网络层只在测试阶段有效
phase: TEST
}
transform_param {
scale: 0.00390625 //归一化系数是1/256,数据都归一化到0~1
}
data_param {
source: "D:/Software/Caffe/caffe-master/examples/mnist/mnist_test_lmdb" //测试数据路径
batch_size: 100 //每批次测试样本包含的样本数
backend: LMDB //数据格式(后缀)是LMDB
}
}
layer { //定义一个网络层
name: "conv1" //网络层的名称是conv1
type: "Convolution" //网络层的类型是卷积层
bottom: "data" //网络层的输入是data
top: "conv1" //网络层的输出是conv1
param {
lr_mult: 1 //weights的学习率跟全局基础学习率保持一致
}
param {
lr_mult: 2 //偏置的学习率是全局学习率的两倍
}
convolution_param { //卷积参数设置
num_output: 20 //输出是20个特征图
kernel_size: 5 //卷积核的尺寸是5*5
stride: 1 //卷积步长是1
weight_filler {
type: "xavier" //指定weights权重初始化方式
}
bias_filler {
type: "constant" //bias(偏置)的初始化全为0
}
}
}
layer { //定义一个网络层
name: "pool1" //网络层的名称是pool1
type: "Pooling" //网络层的类型是池化层
bottom: "conv1" //网络层的输入是conv1
top: "pool1" //网络层的输出是pool1
pooling_param { //池化参数设置
pool: MAX //池化方式最大池化
kernel_size: 2 //池化核大小2*2
stride: 2 //池化步长2
}
}
layer { //定义一个网络层
name: "conv2" //网络层的名称是conv2
type: "Convolution" //网络层的类型是卷积层
bottom: "pool1" //网络层的输入是pool1
top: "conv2" //网络层的输出是conv2
param {
lr_mult: 1 //weights的学习率跟全局基础学习率保持一致
}
param {
lr_mult: 2 //偏置的学习率是全局学习率的两倍
}
convolution_param { //卷积参数设置
num_output: 50 //输出是50个特征图
kernel_size: 5 //卷积核的尺寸是5*5
stride: 1 //卷积步长是1
weight_filler {
type: "xavier" //指定weights权重初始化方式
}
bias_filler {
type: "constant" //bias(偏置)的初始化全为0
}
}
}
layer { //定义一个网络层
name: "pool2" //网络层的名称是pool2
type: "Pooling" //网络层的类型是池化层
bottom: "conv2" //网络层的输入是conv2
top: "pool2" //网络层的输出是pool2
pooling_param { //池化参数设置
pool: MAX //池化方式最大池化
kernel_size: 2 //池化核大小2*2
stride: 2 //池化步长2
}
}
layer { //定义一个网络层
name: "ip1" //网络层的名称是ip1
type: "InnerProduct" //网络层的类型是全连接层
bottom: "pool2" //网络层的输入是pool2
top: "ip1" //网络层的输出是ip1
param {
lr_mult: 1 //指定weights权重初始化方式
}
param {
lr_mult: 2 //bias(偏置)的初始化全为0
}
inner_product_param { //全连接层参数设置
num_output: 500 //输出是一个500维的向量
weight_filler {
type: "xavier" //指定weights权重初始化方式
}
bias_filler {
type: "constant" //bias(偏置)的初始化全为0
}
}
}
layer { //定义一个网络层
name: "relu1" //网络层的名称是relu1
type: "ReLU" //网络层的类型是激活函数层
bottom: "ip1" //网络层的输入是ip1
top: "ip1" //网络层的输出是ip1
}
layer { //定义一个网络层
name: "ip2" //网络层的名称是ip2
type: "InnerProduct" //网络层的类型是全连接层
bottom: "ip1" //网络层的输入是ip1
top: "ip2" //网络层的输出是ip2
param {
lr_mult: 1 //指定weights权重初始化方式
}
param {
lr_mult: 2 //bias(偏置)的初始化全为0
}
inner_product_param { //全连接层参数设置
num_output: 10 //输出是一个10维的向量,即0~9的数字
weight_filler {
type: "xavier" //指定weights权重初始化方式
}
bias_filler {
type: "constant" //bias(偏置)的初始化全为0
}
}
}
layer { //定义一个网络层
name: "accuracy" //网络层的名称是accuracy
type: "Accuracy" //网络层的类型是准确率层
bottom: "ip2" //网络层的输入是ip2和label
bottom: "label"
top: "accuracy" //网络层的输出是accuracy
include { //定义该网络层只在测试阶段有效
phase: TEST
}
}
layer { //定义一个网络层
name: "loss" //网络层的名称是loss
type: "SoftmaxWithLoss" //网络层的损失函数采用Softmax计算
bottom: "ip2" //网络层的输入是ip2和label
bottom: "label"
top: "loss" //网络层的输出是loss
}
caffe中lenet_train_test.prototxt配置文件注解的更多相关文章
- caffe中lenet_solver.prototxt配置文件注解
caffe框架自带的例子mnist里有一个lenet_solver.prototxt文件,这个文件是具体的训练网络的引入文件,定义了CNN网络架构之外的一些基础参数,如总的迭代次数.测试间隔.基础学习 ...
- [转]caffe中solver.prototxt参数说明
https://www.cnblogs.com/denny402/p/5074049.html solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是so ...
- 浅谈caffe中train_val.prototxt和deploy.prototxt文件的区别
本文以CaffeNet为例: 1. train_val.prototxt 首先,train_val.prototxt文件是网络配置文件.该文件是在训练的时候用的. 2.deploy.prototxt ...
- Caffe中deploy.prototxt 和 train_val.prototxt 区别
之前用deploy.prototxt 还原train_val.prototxt过程中,遇到了坑,所以打算总结一下 本人以熟悉的LeNet网络结构为例子 不同点主要在一前一后,相同点都在中间 train ...
- caffe中通过prototxt文件查看神经网络模型结构的方法
在修改propotxt之前我们可以对之前的网络结构进行一个直观的认识: 可以使用http://ethereon.github.io/netscope/#/editor 这个网址. 将propotxt文 ...
- caffe 中solver.prototxt
关于cifar-10和mnist的weight_decay和momentum也是相当的重要:就是出现一次把cifar-10的两个值直接用在mnist上,发现错误很大.
- caffe mnist实例 --lenet_train_test.prototxt 网络配置详解
1.mnist实例 ##1.数据下载 获得mnist的数据包,在caffe根目录下执行./data/mnist/get_mnist.sh脚本. get_mnist.sh脚本先下载样本库并进行解压缩,得 ...
- caffe中LetNet-5卷积神经网络模型文件lenet.prototxt理解
caffe在 .\examples\mnist文件夹下有一个 lenet.prototxt文件,这个文件定义了一个广义的LetNet-5模型,对这个模型文件逐段分解一下. name: "Le ...
- Windows下使用python绘制caffe中.prototxt网络结构数据可视化
准备工具: 1. 已编译好的pycaffe 2. Anaconda(python2.7) 3. graphviz 4. pydot 1. graphviz安装 graphviz是贝尔实验室开发的一个 ...
随机推荐
- UVA - 11722 Joining with Friend 几何概率
Joining with Friend You are going from Dhaka to Chittagong by train and you ...
- 【DataStructure】The difference among methods addAll(),retainAll() and removeAll()
In the Java collection framework, there are three similar methods, addAll(),retainAll() and removeAl ...
- 0x28 IDA*
一个早上做完了我真牛B 就是A*用于DFS啊,现在我才发现迭代加深真是个好东西. poj3460 %了%了我们的目标是把它的顺序变对,那么第i个位置的值+1是要等于第i+1个位置的值的.对于一个操作, ...
- zzulioj--1769--去师院的旅程:能怎么走(三)(0.0)
1796: 去师院的旅程:能怎么走(三) Time Limit: 1 Sec Memory Limit: 128 MB Submit: 404 Solved: 200 SubmitStatusWe ...
- 5.文件I/O
1 C标准函数与系统函数的区别 文件的结构体: 1.1 I/O缓冲区 每一个FILE文件流都有一个缓冲区buffer,默认大小8192Byte. 1.2 效率 文件缓冲区会降低效率.这里提供缓冲区主要 ...
- php基础知识(一)--2017-04-14
1.Php的两种打开方式: 第一种方式:地址栏打开:http://localhost/0414/qq.php 地址栏输入localhost/ 就是phpstudy下的www文件夹 第二种:新 ...
- python初始面向对象
阅读目录 楔子 面向过程vs面向对象 初识面向对象 类的相关知识 对象的相关知识 对象之间的交互 类命名空间与对象.实例的命名空间 类的组合用法 初识面向对象小结 面向对象的三大特性 继承 多态 封装 ...
- python中set集合的使用
集合(set):把不同的元素组成一起形成集合,是python基本的数据类型. python 的集合类型和 其他语言类似, 是一个无序不重复元素集 基本功能包括关系测试和消除重复元素.集合对象还支持un ...
- JavaScript设计模式学习——builder pattern(建造者模式)
个人理解的应用场景 举个例子,比如想要创建各种类型的车的实例,车的类型有很多种,但创建每种类型车的接口定义可能是一样的,就用到了此模式 相关概念的通俗解释 上述例子中接口的定义叫builder 接口到 ...
- GreenDao 3.X之基本使用
在GreenDao 3.X之注解已经了解到GreenDao 3.0的改动及注解.对于数据库的操作,无异于增删改查等四个操作.下面我们将了解GreenDao 3.X如何使用? AbstractDao 所 ...