好矩阵

时间限制:3000ms
单点时限:1000ms
内存限制:256MB

描写叙述

给定n, m。一个n × m矩阵是好矩阵当且仅当它的每一个位置都是非负整数,且每行每列的和 ≤ 2。求好矩阵的个数。模109 + 7

输入

第一行一个整数T,表示測试点个数。

以下T个測试点。

每一个測试点一行。包括两个整数n。m。

1 ≤ T ≤ 104. 1 ≤ n, m ≤ 100.

输出

T行。

每行是相应測试点的答案。

例子输入

1
2 2

例子输出

26

题意非常easy。因为,数量非常大。假设考虑一个一个方格的放,要考虑横向的,又要考虑竖向的,非常复杂,所以不可取。所以一排一排的放,假设,m是一定的,那么。每一排仅仅须要考虑不超过2,且与前面已经排好的不冲突就能够了。

dp[i][a][b]表示,第i排,有a列0,b列1,m - a - b列2,的个数则

dp[i+1][a][b]+= dp[i][a][b];//第i+1排全放0
dp[i+1][a-1][b] += (ll)a * dp[i][a][b];//第i+1排在和为0那些列放一个2
dp[i+1][a-1][b+1] += (ll)a * dp[i][a][b];//第i+1排和为1放一个1
dp[i+1][a-1][b]+= (ll)a * (ll) b * dp[i][a][b];//第i+1排和为0 和为1的列各选一个 放两个1
dp[i+1][a][b-1] += (ll)b * dp[i][a][b];//第i+1排选一个和为1的列放一个1
dp[i+1][a-2][b+2] += (ll)(a * (a-1)/2) * dp[i][a][b];//第i+1排选两个和为0放两个1
dp[i+1][a][b-2] += (ll)(b * (b-1)/2) * dp[i][a][b];//第i+1排选两个和为1的放两个1

总复杂度为o(n^4);

#define N 105
#define M 100005
#define maxn 205
#define MOD 1000000007
int n,m,T;
ll dp[N][N][N],ans[N][N];
int main()
{
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
for(int m = 1;m<=100;m++){
int n = 100;
for(int i =0;i<=n;i++){
for(int a = 0;a<=m;a++){
for(int b = 0;b<=m;b++){
dp[i][a][b] = 0;
}
}
}
dp[0][m][0] = 1;
for(int i = 0;i<n;i++){
for(int a = 0;a<=m;a++){
for(int b = 0;a + b<=m;b++){
dp[i+1][a][b]+= dp[i][a][b];
dp[i+1][a][b] %= MOD;
if(a >= 1){
dp[i+1][a-1][b] += (ll)a * dp[i][a][b];
dp[i+1][a-1][b] %= MOD;
dp[i+1][a-1][b+1] += (ll)a * dp[i][a][b];
dp[i+1][a-1][b+1] %= MOD;
}
if(a >= 1 && b >= 1){
dp[i+1][a-1][b]+= (ll)a * (ll) b * dp[i][a][b];
dp[i+1][a-1][b] %= MOD;
}
if(b >= 1 ){
dp[i+1][a][b-1] += (ll)b * dp[i][a][b];
dp[i+1][a][b-1] %= MOD;
}
if(a >= 2 ){
dp[i+1][a-2][b+2] += (ll)(a * (a-1)/2) * dp[i][a][b];
dp[i+1][a-2][b+2] %= MOD;
}
if(b >= 2 ){
dp[i+1][a][b-2] += (ll)(b * (b-1)/2) * dp[i][a][b];
dp[i+1][a][b-2] %= MOD;
}
}
}
ans[i+1][m] = 0;
for(int a = 0;a<=m;a++){
for(int b = 0;b<=m;b++){
ans[i+1][m] += dp[i+1][a][b];
ans[i+1][m] %= MOD;
}
}
}
}
while(S(T)!=EOF)
{
while(T--){
int s,e;
S2(s,e);
printf("%lld\n",ans[s][e]);
}
}
return 0;
}

hihocoder 1124 : 好矩阵 dp的更多相关文章

  1. hdu 4975 最大流问题解决队伍和矩阵,利用矩阵dp优化

    //刚開始乱搞. //网络流求解,假设最大流=全部元素的和则有解:利用残留网络推断是否唯一, //方法有两种,第一种是深搜看看是否存在正边权的环.见上一篇4888 //至少四个点构成的环,另外一种是用 ...

  2. 矩阵dp

    矩阵dp 这里是矩阵dp,不是矩阵乘法优化dp. 矩阵上的dp好像也没什么特殊的?大概有一个套路就是从上向下,从左向右进行dp吧. 首先第一道题好像不是矩阵dp... 1005 矩阵取数游戏:http ...

  3. hdu4975 网络流解方程组(网络流+dfs判环或矩阵DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=4975 A simple Gaussian elimination problem. Time Limit: 20 ...

  4. Poj 2411 Mondriaan's Dream(压缩矩阵DP)

    一.Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, ...

  5. hdu 4975 最大流解决行列和求矩阵问题,用到矩阵dp优化

    //刚开始乱搞. //网络流求解,如果最大流=所有元素的和则有解:利用残留网络判断是否唯一, //方法有两种,第一种是深搜看看是否存在正边权的环,见上一篇4888 //至少四个点构成的环,第二种是用矩 ...

  6. lightOJ 1172 Krypton Number System(矩阵+DP)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1172 题意:一个n进制(2<=n<=6)的数字,满足以下条件:(1)至少包 ...

  7. POJ2778&HDU2243&POJ1625(AC自动机+矩阵/DP)

    POJ2778 题意:只有四种字符的字符串(A, C, T and G),有M中字符串不能出现,为长度为n的字符串可以有多少种. 题解:在字符串上有L中状态,所以就有L*A(字符个数)中状态转移.这里 ...

  8. [hihocoder 1033]交错和 数位dp/记忆化搜索

    #1033 : 交错和 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描写叙述 给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0, a1, ..., an - 1 ...

  9. bzoj1009 KMP+矩阵dp

    https://www.lydsy.com/JudgeOnline/problem.php?id=1009 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(<=Xi<=), ...

随机推荐

  1. 1.什么是Cython

    Cython是一种编程语言,它使Python语言的C扩展像Python本身一样简单.它旨在成为Python语言的超集,为其提供高级,面向对象,功能和动态编程.它的主要功能是支持可选的静态类型声明作为语 ...

  2. Thunder9(迅雷9)去掉右侧浏览器广告的方法

    1.打开文件夹C:\Program Files (x86)\Thunder Network\Thunder9\Program\TBC 2.找到 ThunderBrowser.exe 3.重命名为任意名 ...

  3. nginx虚拟主机的配置不生效

    这个坑找了好久,今天终于找到了问题所在. 一般虚拟主机配置文件是vhost里面单独写一个网站名.conf,然后在nginx最后include vhosts/*.conf 引用. 但是我这里的vhost ...

  4. Android 混淆后的代码调试

    ProGuard的输出文件及用处 混淆之后,会给我们输出一些文件,在gradle方式下是在<project_dir>/build/proguard/目录下,ant是在<project ...

  5. [Python + Unit Testing] Write Your First Python Unit Test with pytest

    In this lesson you will create a new project with a virtual environment and write your first unit te ...

  6. BZOJ 2005 [Noi2010]能量採集 (容斥)

    [Noi2010]能量採集 Time Limit: 10 Sec  Memory Limit: 552 MB Submit: 2324  Solved: 1387 [id=2005"> ...

  7. 玩转Android Camera开发(三):国内首发---使用GLSurfaceView预览Camera 基础拍照demo

    GLSurfaceView是OpenGL中的一个类,也是能够预览Camera的,并且在预览Camera上有其独到之处. 独到之处在哪?当使用Surfaceview无能为力.痛不欲生时就仅仅有使用GLS ...

  8. spark 朴素贝叶斯

    训练代码(scala) import org.apache.spark.mllib.classification.{NaiveBayes,NaiveBayesModel} import org.apa ...

  9. xBIM 高级02 插入复制功能

    系列目录    [已更新最新开发文章,点击查看详细]  IFC 模型中的合并和删除实体是一个非常重要的任务,因为 IFC 不是一个分层结构.它是一个复杂的结构,具有潜在的循环关系,是一个双向导航.在单 ...

  10. BZOJ 4568 倍增维护线性基

    在树的路径上选取一些点 使得这些点权xor后的结果最大 思路: 时限60s 59696ms卡过去了哈哈哈 //By SiriusRen #include <cstdio> #include ...