本题枚举每多一个球需要多少个柱子,可以边加边边计算,每次只需要判断$i-Dinic()$即可;特别注意边界。

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <queue> using namespace std; template<const int _n>
struct Edge
{
struct Edge_base { int to,w,next; }e[_n];
int cnt,p[_n];
Edge() { clear(); }
void clear() { cnt=,memset(p,,sizeof(p)); }
int start(const int x) { return p[x]; }
Edge_base& operator[](const int x) { return e[x]; }
void insert(const int x,const int y,const int z)
{ e[++cnt].to=y; e[cnt].next=p[x]; e[cnt].w=z; p[x]=cnt; return ; }
}; int n,level[],cur[],SSS,TTT,Ans;
Edge<> e; bool Bfs(const int S)
{
int i,t;
queue<int> Q;
memset(level,,sizeof(level));
level[S]=;
Q.push(S);
while(!Q.empty())
{
t=Q.front(),Q.pop();
for(i=e.start(t);i;i=e[i].next)
{
if(!level[e[i].to] && e[i].w)
{
level[e[i].to]=level[t]+;
Q.push(e[i].to);
}
}
}
return level[TTT];
} int Dfs(const int S,const int bk)
{
if(S==TTT)return bk;
int rest=bk;
for(int &i=cur[S];i;i=e[i].next)
{
if(level[e[i].to]==level[S]+ && e[i].w)
{
int flow=Dfs(e[i].to,min(rest,e[i].w));
e[i].w-=flow;
e[i^].w+=flow;
if((rest-=flow)<=)break;
}
}
if(rest==bk)level[S]=;
return bk-rest;
} int Dinic()
{
while(Bfs(SSS))
{
memcpy(cur,e.p,sizeof(cur));
Ans+=Dfs(SSS,0x3f3f3f3f);
}
return Ans;
} int Build()
{
SSS=,TTT=SSS+;
int j;
e.insert(SSS,,);
e.insert(,SSS,);
e.insert(,TTT,);
e.insert(TTT,,);
for(j=;j-Dinic()<=n;)
{
j++;
e.insert(SSS,j,),e.insert(j,SSS,);
e.insert(j+,TTT,),e.insert(TTT,j+,);
for(int i=;i<j;++i)
{
int t=i+j;
for(int k=;k*k<=t;++k)
if(t==k*k)
{
e.insert(i,j+,);
e.insert(j+,i,);
break;
}
}
}
return j;
} int main()
{
freopen("balla.in","r",stdin);
freopen("balla.out","w",stdout);
int mid;
scanf("%d",&n); mid=Build(); printf("%d\n",mid-); return ;
}

[cogs396] [网络流24题#4] 魔术球 [网络流,最大流,最小路径覆盖]的更多相关文章

  1. 刷题总结——魔术球问题(ssoj最小路径覆盖+网络流)

    题目: 题目描述 假设有 n 根柱子,现要按下述规则在这 n 根柱子中依次放入编号为 1,2 ,3,… 的球.(1)每次只能在某根柱子的最上面放球.(2)在同一根柱子中,任何 2 个相邻球的编号之和为 ...

  2. 2018.10.14 loj#6003. 「网络流 24 题」魔术球(最大流)

    传送门 网络流好题. 这道题可以动态建图. 不难想到把每个球iii都拆点成i1i_1i1​和i2i_2i2​,每次连边(s,i1),(i2,t)(s,i_1),(i_2,t)(s,i1​),(i2​, ...

  3. LOJ6003 - 「网络流 24 题」魔术球

    原题链接 Description 假设有根柱子,现要按下述规则在这根柱子中依次放入编号为的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何2个相邻球的编号之和为完全平方数. 试设计一个算法 ...

  4. LibreOJ 6003. 「网络流 24 题」魔术球 贪心或者最小路径覆盖

    6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...

  5. Libre 6003 「网络流 24 题」魔术球 (网络流,最大流)

    Libre 6003 「网络流 24 题」魔术球 (网络流,最大流) Description 假设有n根柱子,现要按下述规则在这n根柱子中依次放入编号为 1,2,3,4......的球. (1)每次只 ...

  6. [loj #6003]「网络流 24 题」魔术球 二分图最小路径覆盖,网络流

    #6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...

  7. 【网络流24题】No.4 魔术球问题 (二分+最小路径覆盖)

    [题意] 假设有 n 根柱子, 现要按下述规则在这 n 根柱子中依次放入编号为 1, 2, 3, ¼的球.( 1)每次只能在某根柱子的最上面放球.( 2)在同一根柱子中,任何 2 个相邻球的编号之和为 ...

  8. 【PowerOJ1739&网络流24题】魔术球问题(最大流)

    题意: 思路: 0.[问题分析] 枚举答案转化为判定性问题,然后最小路径覆盖,可以转化成二分图最大匹配,从而用最大流解决. [建模方法] 枚举答案A,在图中建立节点1..A.如果对于i<j有i+ ...

  9. 【刷题】LOJ 6003 「网络流 24 题」魔术球

    题目描述 假设有 \(n\) 根柱子,现要按下述规则在这 \(n\) 根柱子中依次放入编号为 \(1, 2, 3, 4, \cdots\) 的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任 ...

随机推荐

  1. 创建APP检查更新页

    本文来源及参考:Create a check for updates page for your app. 这篇文章解释了如何创建一个简单的检查更新页,检查该用户已安装的应用程序的最新版本. 简介 这 ...

  2. [Swift通天遁地]五、高级扩展-(8)ImageView(图像视图)的各种扩展方法

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  3. JAVA小记(一)

    java中向上转型.向下转型.内部类中所需注意的问题: 向上转型与向下转型: 举个例子:有2个类,Father是父类,Son类继承自Father. Father f1 = new Son();   / ...

  4. [转]mysql的约束

    转自:http://blog.csdn.net/kqygww/article/details/8882990 MySQL中约束保存在information_schema数据库的table_constr ...

  5. csf 课件转化为wmv正常格式

    1. 下载csf文件到本地:如下图 2.从下面百度网盘下载到本地: https://pan.baidu.com/s/1BBbgq  n85a 3.安装并出现下面图标,点击打开 4. 运行如下图 5.  ...

  6. Angular——基本使用

    基本介绍 1.AngularJS是一个框架(诸多类库的集合)以数据和逻辑做为驱动(核心). 2.AngularJS有着诸多特性,最为核心的是:模块化.双向数据绑定.语义化标签.依赖注入等. 模块化 使 ...

  7. SQL基本操作——约束

    我们将主要探讨以下几种约束: 1.NOT NULL 2.UNIQUE 3.PRIMARY KEY 4.FOREIGN KEY 5.CHECK 6.DEFAULT SQL NOTNULL约束:NOT N ...

  8. gtest ASSERT_TRUE和EXPECT_TRUE

    调用ASSERT_TRUE的函数,返回值类型定义必须是void,如果想返回别的类型,就用EXPECT_TRUE: void abc::fun() { ASSERT_TRUE(fun1()); } bo ...

  9. Android中Adapter和Bridge模式理解和应用

    一 Adapter模式 意图: 将一个类的接口转换成客户希望的另外一个接口. Adapter模式使得原本由于接口不兼容而不能在一起工作的那些类可以在一起工作. 适用性: 使用一个已存在的类,而它的接口 ...

  10. =new、=null、.clear()、system.gc()的区别

    开发经验告诉我 = new是指向另一个地址空间 =null对象被回收 .clear()对象被清空,但是仍然指向原来的地址空间 这三种方式都并没有真正的清理内存 只有system.gc()是直接清理,但 ...