最近参加了天池的一个机场航空人流量预测大赛,需要用时间序列来预测,因此开始使用python的pandas库

发现pandas库功能的确很强大,因此在这记录我的pandas学习之路。

# -*- coding: utf-8 -*-
# 统计未来3小时将要起飞的人数
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler os.chdir('C:/Users\Administrator/Desktop/competition/1017')
df = pd.read_csv('airport_gz_departure_chusai_2ndround.csv',usecols = [2,3])
df = df.dropna(axis = 0) # 删除含有空值的行
df = df[df.flight_time>df.checkin_time] # 删除flighttime早于checktime的行
df = df.sort_values(by='flight_time')# 将数据按flight_time排序
df.flight_time = pd.to_datetime(df.flight_time) #转换数据类型为Timestamp
df.checkin_time = pd.to_datetime(df.checkin_time)
df = df[(df.flight_time-df.checkin_time)<pd.Timedelta(hours=12)] #去除间隔时间相差12个小时的,12这个参数需要自己调试
df = df.flight_time
dataset = pd.tseries.index.DatetimeIndex(df.values) # 转换数据类型为DatetimeIndex times = pd.date_range(start = '2016-09-10 19:00:00',end = '2016-9-25 15:00:00',freq ='10min')
contact_nums = [] for time in times:
start = np.where(dataset>time)[0]
time = time + pd.Timedelta(hours = 3) # 统计当前时间后3小时将要起飞的乘客
end = np.where(dataset<=time)[0]
if len(end)==0:
contact_nums.append(0)
else:
contact_nums.append(end[-1]-start[0]+1) df = pd.DataFrame(contact_nums,index = times,columns = ['num'])
df.to_csv('C:/Users/Administrator/Desktop/competition/DataProcessing/Person_to_fly.csv',index_label = 'time_back') scaler = MinMaxScaler(feature_range = (0,1))
contact_nums = scaler.fit_transform(np.reshape(np.array(contact_nums),(len(contact_nums),1)).astype('float32'))
plt.plot(scaler.inverse_transform(contact_nums))
plt.show()

pandas学习系列(一):时间序列的更多相关文章

  1. 6.1Python数据处理篇之pandas学习系列(一)认识pandas

    目录 目录 (一)介绍与测试 2.作用: 3.导入的格式 4.小测试 (二)数据类型 1.两种重要的数据类型 2.pandas与numpy的比较 目录 (一)介绍与测试 号称处理数据与分析数据最好的第 ...

  2. 6.2Python数据处理篇之pandas学习系列(二)Series数据类型

    目录 目录 (一)Series的组成 (二)Series的创建 1.从标量中创建Series数据 2.从列表中创建Series数据 3.从字典中创建Series数据 4.从ndarry中创建Serie ...

  3. pandas学习(创建数据,基本操作)

    pandas学习(一) Pandas基本数据结构 Series类型数据 Dataframe类型 基本操作 Pandas基本数据结构 两种常用数据结构: Series 一维数组,与Numpy中的一维ar ...

  4. SPSS学习系列之SPSS Modeler的功能特性(图文详解)

    不多说,直接上干货! Win7/8/10里如何下载并安装最新稳定版本官网IBM SPSS Modeler 18.0 X64(简体中文 / 英文版)(破解永久使用)(图文详解)   我这里,是以SPSS ...

  5. 【转】Pandas学习笔记(七)plot画图

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  6. 【转】Pandas学习笔记(六)合并 merge

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  7. 【转】Pandas学习笔记(五)合并 concat

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  8. 【转】Pandas学习笔记(四)处理丢失值

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  9. 【转】Pandas学习笔记(三)修改&添加值

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

随机推荐

  1. 细述 Java垃圾回收机制→Types of Java Garbage Collectors

    细述 Java垃圾回收机制→Types of Java Garbage Collectors 转自:https://segmentfault.com/a/1190000006214497 本文非原创, ...

  2. 那些年尝试过的效率工具之Total Commander

    昨天电脑文件很乱,想整理一下发现移动.复制文件要来回目录切换很麻烦,突然就又想起了用Total Commander——简称TC,很久之前尝试过但没坚持使用的工具. 借此机会总结一下自己对TC的认识,后 ...

  3. MySQL表不能修改、删除等操作,卡死、锁死情况的处理办法。

    MySQL如果频繁的修改一个表的数据,那么这么表会被锁死.造成假死现象. 比如用Navicat等连接工具操作,Navicat会直接未响应,只能强制关闭软件,但是重启后依然无效. 解决办法: 首先执行: ...

  4. 人生苦短,请用 Chrome!

    在网络层,互联网提供所有应用程序都要使用的两种类型的服务,尽管目前理解这些服务的细节并不重要,但在所有TCP/IP概述中,都不能忽略他们: 无连接分组交付服务(Connectionless Packe ...

  5. (转载)Android滑动冲突的完美解决

    Android滑动冲突的完美解决 作者:softwindy_brother 字体:[增加 减小] 类型:转载 时间:2017-01-24我要评论 这篇文章主要为大家详细介绍了Android滑动冲突的完 ...

  6. js中获取数据类型

    ES5中,js中数据类型:number.string.boolean.undefined.null.object js中获取数据类型常用的四种方式 实例: var a = 123, b = true, ...

  7. 'Upgrade' header is missing

    spring-websocket 握手失败是因为 有拦截器  注释掉拦截器就OK

  8. java zyUpload 实现多文件上传

    1.html部分 <form enctype="multipart/form-data"> <label>请选择文件</label> <i ...

  9. @GetMapping、@PostMapping、@PutMapping、@DeleteMapping、@PatchMapping

    @GetMapping.@PostMapping.@PutMapping.@DeleteMapping.@PatchMapping  @GetMapping是一个组合注解,是@RequestMappi ...

  10. pandas 2 选择数据

    from __future__ import print_function import pandas as pd import numpy as np np.random.seed(1) dates ...