最近参加了天池的一个机场航空人流量预测大赛,需要用时间序列来预测,因此开始使用python的pandas库

发现pandas库功能的确很强大,因此在这记录我的pandas学习之路。

# -*- coding: utf-8 -*-
# 统计未来3小时将要起飞的人数
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler os.chdir('C:/Users\Administrator/Desktop/competition/1017')
df = pd.read_csv('airport_gz_departure_chusai_2ndround.csv',usecols = [2,3])
df = df.dropna(axis = 0) # 删除含有空值的行
df = df[df.flight_time>df.checkin_time] # 删除flighttime早于checktime的行
df = df.sort_values(by='flight_time')# 将数据按flight_time排序
df.flight_time = pd.to_datetime(df.flight_time) #转换数据类型为Timestamp
df.checkin_time = pd.to_datetime(df.checkin_time)
df = df[(df.flight_time-df.checkin_time)<pd.Timedelta(hours=12)] #去除间隔时间相差12个小时的,12这个参数需要自己调试
df = df.flight_time
dataset = pd.tseries.index.DatetimeIndex(df.values) # 转换数据类型为DatetimeIndex times = pd.date_range(start = '2016-09-10 19:00:00',end = '2016-9-25 15:00:00',freq ='10min')
contact_nums = [] for time in times:
start = np.where(dataset>time)[0]
time = time + pd.Timedelta(hours = 3) # 统计当前时间后3小时将要起飞的乘客
end = np.where(dataset<=time)[0]
if len(end)==0:
contact_nums.append(0)
else:
contact_nums.append(end[-1]-start[0]+1) df = pd.DataFrame(contact_nums,index = times,columns = ['num'])
df.to_csv('C:/Users/Administrator/Desktop/competition/DataProcessing/Person_to_fly.csv',index_label = 'time_back') scaler = MinMaxScaler(feature_range = (0,1))
contact_nums = scaler.fit_transform(np.reshape(np.array(contact_nums),(len(contact_nums),1)).astype('float32'))
plt.plot(scaler.inverse_transform(contact_nums))
plt.show()

pandas学习系列(一):时间序列的更多相关文章

  1. 6.1Python数据处理篇之pandas学习系列(一)认识pandas

    目录 目录 (一)介绍与测试 2.作用: 3.导入的格式 4.小测试 (二)数据类型 1.两种重要的数据类型 2.pandas与numpy的比较 目录 (一)介绍与测试 号称处理数据与分析数据最好的第 ...

  2. 6.2Python数据处理篇之pandas学习系列(二)Series数据类型

    目录 目录 (一)Series的组成 (二)Series的创建 1.从标量中创建Series数据 2.从列表中创建Series数据 3.从字典中创建Series数据 4.从ndarry中创建Serie ...

  3. pandas学习(创建数据,基本操作)

    pandas学习(一) Pandas基本数据结构 Series类型数据 Dataframe类型 基本操作 Pandas基本数据结构 两种常用数据结构: Series 一维数组,与Numpy中的一维ar ...

  4. SPSS学习系列之SPSS Modeler的功能特性(图文详解)

    不多说,直接上干货! Win7/8/10里如何下载并安装最新稳定版本官网IBM SPSS Modeler 18.0 X64(简体中文 / 英文版)(破解永久使用)(图文详解)   我这里,是以SPSS ...

  5. 【转】Pandas学习笔记(七)plot画图

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  6. 【转】Pandas学习笔记(六)合并 merge

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  7. 【转】Pandas学习笔记(五)合并 concat

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  8. 【转】Pandas学习笔记(四)处理丢失值

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  9. 【转】Pandas学习笔记(三)修改&添加值

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

随机推荐

  1. 3.多线程传参,以及tuple数组

    #include <Windows.h> #include <thread> #include <iostream> #include <tuple> ...

  2. Storm Spout

    本文主要介绍了Storm Spout,并以KafkaSpout为例,进行了说明. 概念 数据源(Spout)是拓扑中数据流的来源.一般 Spout 会从一个外部的数据源读取元组然后将他们发送到拓扑中. ...

  3. WPF 基础

    关于布局的规则 控件的布局应该由容器来决定,而不是通过自身使用margin之类的东西来控制位置 避免为控件定义明确的尺寸,但应该限定一个可接受的最大及最小尺寸 不要将界面元素设置成与屏幕坐标相关 容器 ...

  4. java 获取线程id

    如何获取正在运行的线程的ID? 解决方法 下面的示例演示如何使用getThreadId() 方法一个正在运行线程的ID. public class Main extends Object implem ...

  5. POJ 3273 Monthly Expense 【二分答案】

    题意:给出n天的花费,需要将这n天的花费分成m组,使得每份的和尽量小,求出这个最小的和 看题目看了好久不懂题意,最后还是看了题解 二分答案,上界为这n天花费的总和,下界为这n天里面花费最多的那一天 如 ...

  6. 找出在使用临时表空间的SQL

    SELECT a.username, a.sid, a.serial#, a.osuser, b.tablespace, b.blocks, c.sql_text FROM v$session a, ...

  7. RocketMQ学习笔记(1)----RocketMQ的简介

    1. 什么是RocketMQ? 是一个队列模型的消息中间件,具有高性能.高可靠.高实时.分布式特点. Producer.Consumer.队列都可以分布式.  Producer 吐一些队列轮流収送消息 ...

  8. 一、数组---数组中的K-diff数对※※※※※

    给定一个整数数组和一个整数 k, 你需要在数组里找到不同的 k-diff 数对.这里将 k-diff 数对定义为一个整数对 (i, j), 其中 i 和 j 都是数组中的数字,且两数之差的绝对值是 k ...

  9. 小程序canvas生成二维码图片踩的坑

    1:生成临时图片,保证画布被加载以及渲染(即本身不可以 hidden 或是 上级元素不可以 hidden 或是 wx:if 隐藏等) == > 建议:因为 canvas 的组件层级(z-inde ...

  10. 使用VUE开发微信小程序

    使用 mpvue 开发小程序,你将在小程序技术体系的基础上获取到这样一些能力: 彻底的组件化开发能力:提高代码复用性完整的 Vue.js 开发体验方便的 Vuex 数据管理方案:方便构建复杂应用快捷的 ...