A.Teemo's bad day

Today is a bad day. Teemo is scolded badly by his teacher because he didn't do his homework.But Teemo is very self-confident, he tells the teacher that the problems in the homework are too simple to solve. So the teacher gets much angrier and says"I will choose a problem in the homework, if you can't solve it, I will call you mother! "

The problem is that:

There is an array A which contains n integers, and an array B which also contains n integers. You can pay one dollar to buy a card which contains two integers a1 and a2, The card can arbitrary number of times transform a single integer a1 to a2 and vise-versa on both array A and Array B. Please calculate the minimum dollars you should pay to make the two array same(For every 1<=i<=n,A[i]=B[i]);

Input Format

  • The first line of the input contains an integer T(1<=T<=10), giving the number of test cases.
  • For every test case, the first line contains an integer n(1<=n<=500000). The second line contains n integers. The i th integer represents A[i](1<=A[i]<=100000). And the third line contains n integers. The i th integer represents B[i](1<=B[i]<=100000).

Output Format

For each test case, output an integer which means the minimum dollars you should pay in a line.

样例输入

1
5
1 1 2 3 2
1 2 3 1 1

样例输出

2
将不匹配的联通跑bfs就可以
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
int t,n,a[],b[];
int vis[],c[];
vector<int>v[];
void dfs(int u){
vis[u]=;
for(auto t:v[u]){
if(!vis[t]) dfs(t);
}
}
int main()
{
scanf("%d",&t);
while(t--)
{
memset(vis,,sizeof(vis));
memset(c,,sizeof(c));
scanf("%d",&n);
for(int i=;i<=;i++)
v[i].clear();
for(int i=;i<n;i++) scanf("%d",&a[i]);
for(int i=;i<n;i++){
scanf("%d",&b[i]);
if(a[i]==b[i]) continue;
c[a[i]]=;
c[b[i]]=;
v[a[i]].push_back(b[i]);
v[b[i]].push_back(a[i]);
}
int ans=,pos=;
for(int i=;i<=;i++)
{
if(c[i]){
pos++;
if(!vis[i]){
dfs(i);
ans++;
}
}
}
printf("%d\n",pos-ans);
}
return ;
}

B.Teemo's hard problem

Teemo starts to do homework everyday. Today, he meets a hard problem when doing his homework.

There's an array A which contains n integers(for every 1<=i<=n, A[i] = 1 or A[i]= 2), you can choose an interval [l,r](1<=l<=r<=n), then reverse it so that the length of the longest non-decreasing subsequence of the new sequence is maximum.

Input Format

  • The first line of the input contains an integer T(1=<T<=10), giving the number of test cases.
  • For every test case, the first line contains an integer n(1<=n<=2000). The second line contains n integers. The i th integer represents A[i](1<=A[i]<=2).

Output Format

Print a single integer, which means the maximum possible length of the longest non-decreasing subsequence of the new sequence.

样例输入

1
4
1 2 1 2

样例输出

4
暴力求出正反最长上升子序列,枚举区间
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
int t,n,a[];
int dpf[][],dpl[][];
int b[],ans,pos;
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
memset(dpf,,sizeof(dpf));
memset(dpl,,sizeof(dpl));
for(int i=;i<=n;i++)
{
pos=;
memset(b,,sizeof(b));
for(int j=i;j<=n;j++)
{
if(a[j]>=b[pos]) b[++pos]=a[j];
else
{
int k=upper_bound(b+,b+pos+,a[j])-b;
b[k]=a[j];
}
dpf[i][j]=pos;
}
}
for(int i=n;i;i--)
{
pos=;
memset(b,,sizeof(b));
for(int j=i;j;j--)
{
if(a[j]>=b[pos]) b[++pos]=a[j];
else
{
int k=upper_bound(b+,b+pos+,a[j])-b;
b[k]=a[j];
}
dpl[j][i]=pos;
}
}
ans=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
ans=max(ans,dpf[][n]-dpf[i][j]+dpl[i][j]);
printf("%d\n",ans);
}
return ;
}

C.Teemo's tree problem

There is an apple tree in Teemo's yard. It contains n nodes and n-1 branches, and the node 1 is always the root of the tree. Today, Teemo's father will go out for work. So Teemo should do his father's job in the family: Cut some branches to make the tree more beautiful. His father's told him that he should cut some branches, finally, the tree should just contains q branches. But when Teemo start to cut, he realizes that there are some apples in the branches( For example, there are 10 apples in the branches which connecting node 1 and node 4). So Teemo not only wants to achieve his father's order, but also wants to preserve apples as much as possible. Can you help him?

 
1
2   5
2
 \ / 
3
  3   4
4
   \ /
5
    1

Input Format

  • The first line of the input contains an integer T(1<=T<=10) which means the number of test cases.
  • For
    each test case, The first line of the input contains two integers
    n,q(3<=n<=100,1<=q<=n-1), giving the number of the node and
    the number of branches that the tree should preserve.
  • In the
    next n-1 line, each line contains three integers
    u,v,w(1<=u<=n,1<=v<=n,u!=v,1<=w<=100000), which means
    there is a branch connecting node u and node v, and there are w apple(s)
    on it.

Output Format

Print a single integer, which means the maximum possible number of apples can be preserved.

样例输入

1
5 2
1 3 1
1 4 10
2 3 20
3 5 20

样例输出

21
树型DP,只有n-1边,一遍dfs,把边的权值赋给子节点,1结点赋成无限大
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <ext/rope>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 1044266560
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
typedef pair<int,int> P;
int n,m,t,f[][];
int vis[],val[],ans;
vector<P>v[];
void solve(int u)
{
vis[u]=;
for(int i=;i<v[u].size();i++)
{
if(!vis[v[u][i].first]){
val[v[u][i].first]=v[u][i].second;
solve(v[u][i].first);
}
}
}
int dfs(int u,int fa)
{
vis[u]=;
for(int i=;i<v[u].size();i++)
{
if(v[u][i].first==fa) continue;
vis[u]+=dfs(v[u][i].first,u);
}
f[u][]=val[u];
for(int i=;i<v[u].size();i++){
if(v[u][i].first==fa) continue;
for(int j=vis[u];j>=;j--){
for(int k=;k<j && k<=vis[v[u][i].first];k++)
f[u][j]=max(f[u][j],f[u][j-k]+f[v[u][i].first][k]);
}
}
if(vis[u]>=m) ans=max(ans,f[u][m]);
return vis[u];
}
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
memset(vis,,sizeof(vis));
memset(val,,sizeof(val));
memset(f,,sizeof(f));
for(int i=;i<=n;i++)
v[i].clear();
for(int i=,x,y,z;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
v[x].push_back(P(y,z));
v[y].push_back(P(x,z));
}
solve();
memset(vis,,sizeof(vis));
val[]=;
m++;
ans=-;
dfs(,);
printf("%d\n",ans-val[]);
}
return ;
}

F.Teemo's dream

Teemo decides to use his money to conquer the universe.

It is known that there are m planets that humans can reach at present. They are numbered from 1 to m. Teemo bought n kinds of gateways. Their IDs are a1, a2, ..., an, the gateway whose ID is ai can transmit Teemo to the stars numbered ai,2ai, 3ai, ..., k*ai (1<=k*ai<=m, k is a positive integer), now Teemo wants to know, how many planets can he reach?

Input Format

On the firstline one positive number: the number of test cases, at most 20. After that per test case:

  • One line contains two integers n and m, (1 <= n <= 15, 1<= m < = 1e9), respectively represent the number of the gateway, the number of the stars that humans can reach.
  • One line contains integers, the i-th integer a[i], indicating that the ID of the  i-th gateway is a[i], (2<=a[i]<=1e9).

Ouput Format

Per test case:

  • One line contains an integer, which indicates how many planets Teemo can reach at most.

容斥定理

1到m包含多少个a[i]的倍数

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
ll t,n,m;
ll a[],b[],ans=;
ll lcm(ll x,ll y){
return x/__gcd(x,y)*y;
}
void solve(int n,int l,int r,int k)
{
for(int i=n;i>=l;i--)
{
b[l-]=a[i-];
if(l>) solve(i-,l-,r,k);
else{
ll pos=lcm(b[r-],b[r-]);
for(int j=r-;j>=;j--)
{
pos=lcm(pos,b[j]);
if(pos>m) goto eg;
}
if(k) ans+=m/pos;
else ans-=m/pos;
eg:;
}
}
}
int main()
{
scanf("%lld",&t);
while(t--)
{
scanf("%lld%lld",&n,&m);
ans=;
for(int i=;i<n;i++)
{
scanf("%lld",&a[i]);
ans+=m/a[i];
}
for(int i=;i<=n;i++)
solve(n,i,i,i&);
printf("%lld\n",ans);
}
return ;
}

G.Teemo's convex polygon

Teemo is very interested in convex polygon. There is a convex n-sides polygon, and Teemo connect every two points as diagonal lines, and he want to kown how many segments which be divided into intersections. Teemo ensure that any three diagonals do not intersect at a point.

As the result may be very large, please output the result mod 1000000007.

Input Format

The
input contains several test cases, and the first line is a positive
integer T indicating the number of test cases which is up to 100.

For each test case, the first line contains an integer n(3<=n<=10^18).

Output Format

For each test case, output a line containing an integer that indicates the answer.

样例输入

2
3
4

样例输出

0
4
数据保证没有三条线段交于一点,公式为(n^4-6n^3+17n^2-24n)/12
import java.math.BigInteger;
import java.util.Scanner;
public class Main{
static Scanner cin = new Scanner(System.in);
static BigInteger[] a = new BigInteger[10];
public static void main(String args[]){
long n,m;
m = cin.nextLong();
while(m>0){
m =m-1;
n = cin.nextLong();
a[1] = BigInteger.valueOf(n);
a[2] = a[1].multiply(BigInteger.valueOf(n));
a[3] = a[2].multiply(BigInteger.valueOf(n));
a[4] = a[3].multiply(BigInteger.valueOf(n));
a[3] = a[3].multiply(BigInteger.valueOf(6));
a[2] = a[2].multiply(BigInteger.valueOf(17));
a[1] = a[1].multiply(BigInteger.valueOf(24));
a[5] = a[4].subtract(a[3]);
a[5] = a[5].add(a[2]);
a[5] = a[5].subtract(a[1]);
a[5] = a[5].divide(BigInteger.valueOf(12));
System.out.println(a[5].mod(BigInteger.valueOf(1000000007)));
}
}
}

J.Teemo's formula

Teemo has a formula and he want to calculate it quickly.

The formula is .

As the result may be very large, please output the result mod 1000000007.

Input Format

The
input contains several test cases, and the first line is a positive
integer T indicating the number of test cases which is up to 10^5.

For each test case, the first line contains an integer n(1<=n<=10^9).

Output Format

For each test case, output a line containing an integer that indicates the answer.

样例输入

2
2
3

样例输出

6
24
组合公式n(n+1)2^(n-2)
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <ext/rope>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 1044266560
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
ll n,t;
ll quick_pow(ll x,ll y)
{
ll ans=;
while(y){
if(y&) ans=ans*x%MOD;
y>>=;
x=x*x%MOD;
}
return ans;
}
int main()
{
scanf("%lld",&t);
while(t--)
{
scanf("%lld",&n);
if(n==) {printf("1\n");continue;}
printf("%lld\n",n*(n+)%MOD*quick_pow(,n-)%MOD);
}
return ;
}

K.Teemo's reunited

Teemo likes to drink raspberry juice.  He even spent some of his spare time tomake the raspberry juice himself. The way to make the raspberries juice is simple. You just have to press the raspberries through a fine sieve.

Unfortunately,today Teemo was splited in several pieces by the sieve which was used to makethe raspberry juice. The pieces were losted in the huge two-dimensional map. Onlywhen all the pieces gather, can Teemo drink the raspberry juice he made today.

Teemo's piece can only move parallel to the x or y axis, or he would be hated by theraspberry Queen and will not be able to have raspberry juice any more. One of the piece of Teemo should carry the raspberry juice.In order to avoid spilling, this piece cannot move anymore.

Teemo’spiece are lazy, they’d like to make the sum of paths be the minimal. Your task is to find the minimal sum of the paths.

InputFormat
The
first line contains a integer n (1<=n<=100000) represent the
number of thepieces. Then next n lines. Each line contains the pairs of
xi, yi(-1000000000<xi,yi<1000000000) in turn as points by order.

OutputFormat
Printa single line contains the minimal sum of the paths.

样例输入1

3
1 0
2 0
3 0

样例输出1

2

样例输入2

5
4 1
4 4
9 2
2 9
2 6

样例输出2

21
在这些点中找一个点使得所有的点到此点的曼哈顿距离最小,分别对x,y排序
枚举x,y找出不同的x,y对应的最小值,最后枚举点使得x+y最小
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
int dcmp(double x){return fabs(x)<esp?:x<?-:;}
typedef long long ll;
const int lower=;
struct Point
{
ll x,y,num;
}e[];
ll sum_x[],sum_y[],n,sumx=,sumy=;
ll l[],r[];
bool cmpx(const Point &a,const Point &b){return a.x<b.x;}
bool cmpy(const Point &a,const Point &b){return a.y<b.y;}
int main()
{
scanf("%lld",&n);
for(int i=;i<=n;i++)
{
scanf("%lld%lld",&e[i].x,&e[i].y);
e[i].x+=lower;
e[i].y+=lower;
e[i].num=i;
sumx+=e[i].x;
sumy+=e[i].y;
}
sort(e+,e++n,cmpx);
for(int i=;i<=n;i++)
sum_x[i]=sum_x[i-]+e[i].x;
for(int i=;i<=n;i++)
{
ll x=e[i].x;
ll left=(i-)*x-sum_x[i-];
ll right=sumx-sum_x[i]-(n-i)*x;
l[e[i].num]=left+right;
}
sort(e+,e++n,cmpy);
for(int i=;i<=n;i++)
sum_y[i]=sum_y[i-]+e[i].y;
for(int i=;i<=n;i++)
{
ll y=e[i].y;
ll left=(i-)*y-sum_y[i-];
ll right=sumy-sum_y[i]-(n-i)*y;
r[e[i].num]=left+right;
}
ll inf=l[]+r[];
for(int i=;i<=n;i++)
inf=min(inf,l[i]+r[i]);
printf("%lld\n",inf);
return ;
}

ACM训练联盟周赛(第三场)的更多相关文章

  1. 计蒜客 28449.算个欧拉函数给大家助助兴-大数的因子个数 (HDU5649.DZY Loves Sorting) ( ACM训练联盟周赛 G)

    ACM训练联盟周赛 这一场有几个数据结构的题,但是自己太菜,不会树套树,带插入的区间第K小-替罪羊套函数式线段树, 先立个flag,BZOJ3065: 带插入区间K小值 计蒜客 Zeratul与Xor ...

  2. 计蒜客 ACM训练联盟周赛 第一场 Christina式方格取数 思维

    助手Christina发明了一种方格取数的新玩法:在n*m的方格棋盘里,每个格子里写一个数.两个人轮流给格子染色,直到所有格子都染了色.在所有格子染色完后,计算双方的分数.对于任意两个相邻(即有公共边 ...

  3. 计蒜客 ACM训练联盟周赛 第一场 从零开始的神棍之路 暴力dfs

    题目描述 ggwdwsbs最近被Zeratul和Kyurem拉入了日本麻将的坑.现在,ggwdwsbs有13张牌,Kyurem又打了一张,加起来有14张牌.ggwdwsbs想拜托你帮他判断一下,这14 ...

  4. 计蒜客 ACM训练联盟周赛 第一场 Alice和Bob的Nim游戏 矩阵快速幂

    题目描述 众所周知,Alice和Bob非常喜欢博弈,而且Alice永远是先手,Bob永远是后手. Alice和Bob面前有3堆石子,Alice和Bob每次轮流拿某堆石子中的若干个石子(不可以是0个), ...

  5. ACM训练联盟周赛(第一场)

    B:Zeratul与Xor 题目描述 Xor(按位异或),对应C++中的“^”运算符. Zeratul给出了一个数列A[n](n≤105),要做q(q≤105)组动作,这些动作包括: 1  a:数列中 ...

  6. ACM训练联盟周赛 G. Teemo's convex polygon

    65536K   Teemo is very interested in convex polygon. There is a convex n-sides polygon, and Teemo co ...

  7. 计蒜客 28437.Big brother said the calculation-线段树+二分-当前第k个位置的数 ( ACM训练联盟周赛 M)

    M. Big brother said the calculation 通过线段树维护. 这个题和杭电的一道题几乎就是一样的题目.HDU5649.DZY Loves Sorting 题意就是一个n的排 ...

  8. ACM训练联盟周赛 A. Teemo's bad day

    65536K   Today is a bad day. Teemo is scolded badly by his teacher because he didn't do his homework ...

  9. ACM训练联盟周赛 K. Teemo's reunited

    Teemo likes to drink raspberry juice.  He even spent some of his spare time tomake the raspberry jui ...

随机推荐

  1. [linux]shell中,反引號(`)的应用

    反引號位 (`) 位于键盘的Tab键的上方.1键的左方.注意与单引號(')位于Enter键的左方的差别. 反引號位 (`)在Linux中起着命令替换的作用. 命令替换是指shell可以将一个命令的标准 ...

  2. Codeforce 163 A. Substring and Subsequence DP

    A. Substring and Subsequence   One day Polycarpus got hold of two non-empty strings s and t, consist ...

  3. JavaScript中Number常用属性和方法

    title: JavaScript中Number常用属性和方法 toc: false date: 2018-10-13 12:31:42 Number.MAX_VALUE--1.79769313486 ...

  4. Aspose office (Excel,Word,PPT),PDF 在线预览

    前文: 做个备份,拿的是试用版的 Aspose,功能见标题 代码: /// <summary> /// Aspose office (Excel,Word,PPT),PDF 在线预览 // ...

  5. mysql读写分离原理及配置

    1 复制概述 Mysql内建的复制功能是构建大型,高性能应用程序的基础.将Mysql的数据分布到多个系统上去,这种分布的机制,是通过将Mysql的某一台主机的数据复制到其它主机(slaves)上,并重 ...

  6. (转载)10个实用的但偏执的Java编程技术

    10个实用的但偏执的Java编程技术 在沉浸于编码一段时间以后(比如说我已经投入近20年左右的时间在程序上了),你会渐渐对这些东西习以为常.因为,你知道的…… 作者:小峰来源:码农网|2015-09- ...

  7. lsof 命令简介

    losf 命令可以列出某个进程打开的所有文件信息.打开的文件可能是普通的文件,目录,NFS文件,块文件,字符文件,共享库,常规管道,明明管道,符号链接,Socket流,网络Socket,UNIX域So ...

  8. ActiveMQ学习笔记(10)----ActiveMQ容错的连接

    1. Failover Protocol 前面讲述的都是Client配置连接到指定的broker上,但是,如果Broker的连接失败怎么办呢?此时,Client有两个选项:要么立刻死掉,要么连接到其他 ...

  9. 中级前端工程师要掌握的JavaScript 技巧

    1.判断对象的数据类型 2.Es5实现数组map方法 3.使用reduce实现数组map方法 4.ES5 实现数组filter方法 5.使用reduce实现filter方法 6.ES5 实现数组som ...

  10. 织梦(dedecms)循环调用多级子栏目如二级栏目下三级栏目

    本文是关于织梦DedeCMS调用多级子栏目的,拿来分享下. 后台已经建好栏目,对于产品展示栏 栏目导航如下图所示:  复制代码 代码如下: {dede:channelartlist cacheid=' ...