二、训练

接下来回到train.py第160行,通过调用sw.train_model方法进行训练:

     def train_model(self, max_iters):
"""Network training loop."""
last_snapshot_iter = -1
timer = Timer()
model_paths = []
while self.solver.iter < max_iters:
# Make one SGD update
timer.tic()
self.solver.step(1)
timer.toc()
if self.solver.iter % (10 * self.solver_param.display) == 0:
print 'speed: {:.3f}s / iter'.format(timer.average_time) if self.solver.iter % cfg.TRAIN.SNAPSHOT_ITERS == 0:
last_snapshot_iter = self.solver.iter
model_paths.append(self.snapshot()) if last_snapshot_iter != self.solver.iter:
model_paths.append(self.snapshot())
return model_paths

方法中的self.solver.step(1)即是网络进行一次前向传播和反向传播。前向传播时,数据流会从第一层流动到最后一层,最后计算出loss,然后loss相对于各层输入的梯度会从最后一层计算回第一层。下面逐层来介绍faster-rcnn算法的运行过程。

2.1、input-data layer

第一层是由python代码构成的,其prototxt描述为:

layer {
name: 'input-data'
type: 'Python'
top: 'data'
top: 'im_info'
top: 'gt_boxes'
python_param {
module: 'roi_data_layer.layer'
layer: 'RoIDataLayer'
param_str: "'num_classes': 2"
}
}

从中可以看出,input-data层有三个输出:data、im_info、gt_boxes,其实现为RoIDataLayer类。这一层对数据的预处理操作为:对图片进行长宽等比例缩放,使短边缩放至600;如果缩放后,长边的长度大于1000,则以长边为基准,将长边缩放至1000,短边作相应的等比例缩放。这一层的3个输出分别为:

1、data:1, 3, h, w(一个batch只支持输入一张图)

2、im_info: im_info[0], im_info[1], im_info[2]分别为h, w, target_size/im_origin_size(缩放比例)

3、gt_boxes: (x1, y1, x2, y2, cls)

预处理部分涉及到的函数有_get_next_minibatchget_minibatch_get_image_blobprep_im_for_blobim_list_to_blob

网络在构造过程中(即self.solver = caffe.SGDSolver(solver_prototxt))会调用该类的setup方法:

 __C.TRAIN.IMS_PER_BATCH = 1
__C.TRAIN.SCALES = [600]
__C.TRAIN.MAX_SIZE = 1000
__C.TRAIN.HAS_RPN = True
__C.TRAIN.BBOX_REG = True def setup(self, bottom, top):
"""Setup the RoIDataLayer.""" # parse the layer parameter string, which must be valid YAML
layer_params = yaml.load(self.param_str_) self._num_classes = layer_params['num_classes'] self._name_to_top_map = {} # data blob: holds a batch of N images, each with 3 channels
idx = 0
top[idx].reshape(cfg.TRAIN.IMS_PER_BATCH, 3,
max(cfg.TRAIN.SCALES), cfg.TRAIN.MAX_SIZE)
self._name_to_top_map['data'] = idx
idx += 1 if cfg.TRAIN.HAS_RPN:
top[idx].reshape(1, 3)
self._name_to_top_map['im_info'] = idx
idx += 1 top[idx].reshape(1, 4)
self._name_to_top_map['gt_boxes'] = idx
idx += 1
else: # not using RPN
# rois blob: holds R regions of interest, each is a 5-tuple
# (n, x1, y1, x2, y2) specifying an image batch index n and a
# rectangle (x1, y1, x2, y2)
top[idx].reshape(1, 5)
self._name_to_top_map['rois'] = idx
idx += 1 # labels blob: R categorical labels in [0, ..., K] for K foreground
# classes plus background
top[idx].reshape(1)
self._name_to_top_map['labels'] = idx
idx += 1 if cfg.TRAIN.BBOX_REG:
# bbox_targets blob: R bounding-box regression targets with 4
# targets per class
top[idx].reshape(1, self._num_classes * 4)
self._name_to_top_map['bbox_targets'] = idx
idx += 1 # bbox_inside_weights blob: At most 4 targets per roi are active;
# thisbinary vector sepcifies the subset of active targets
top[idx].reshape(1, self._num_classes * 4)
self._name_to_top_map['bbox_inside_weights'] = idx
idx += 1 top[idx].reshape(1, self._num_classes * 4)
self._name_to_top_map['bbox_outside_weights'] = idx
idx += 1 print 'RoiDataLayer: name_to_top:', self._name_to_top_map
assert len(top) == len(self._name_to_top_map)

主要是对输出的shape进行定义。要说明的是,在前向传播的过程中,仍然会对输出的各top的shape进行重定义,并且二者定义的shape往往都是不同的。

faster-rcnn代码阅读2的更多相关文章

  1. Faster R-CNN代码例子

    主要参考文章:1,从编程实现角度学习Faster R-CNN(附极简实现) 经常是做到一半发现收敛情况不理想,然后又回去看看这篇文章的细节. 另外两篇: 2,Faster R-CNN学习总结      ...

  2. Faster RCNN代码理解(Python)

    转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初 ...

  3. Faster rcnn代码理解(4)

    上一篇我们说完了AnchorTargetLayer层,然后我将Faster rcnn中的其他层看了,这里把ROIPoolingLayer层说一下: 我先说一下它的实现原理:RPN生成的roi区域大小是 ...

  4. Faster rcnn代码理解(2)

    接着上篇的博客,咱们继续看一下Faster RCNN的代码- 上次大致讲完了Faster rcnn在训练时是如何获取imdb和roidb文件的,主要都在train_rpn()的get_roidb()函 ...

  5. Faster rcnn代码理解(1)

    这段时间看了不少论文,回头看看,感觉还是有必要将Faster rcnn的源码理解一下,毕竟后来很多方法都和它有相近之处,同时理解该框架也有助于以后自己修改和编写自己的框架.好的开始吧- 这里我们跟着F ...

  6. Faster R-CNN论文阅读摘要

    论文链接: https://arxiv.org/pdf/1506.01497.pdf 代码下载: https://github.com/ShaoqingRen/faster_rcnn (MATLAB) ...

  7. Faster rcnn代码理解(3)

    紧接着之前的博客,我们继续来看faster rcnn中的AnchorTargetLayer层: 该层定义在lib>rpn>中,见该层定义: 首先说一下这一层的目的是输出在特征图上所有点的a ...

  8. Faster RCNN代码解析

    1.faster_rcnn_end2end训练 1.1训练入口及配置 def train(): cfg.GPU_ID = 0 cfg_file = "../experiments/cfgs/ ...

  9. tensorflow faster rcnn 代码分析一 demo.py

    os.environ["CUDA_VISIBLE_DEVICES"]=2 # 设置使用的GPU tfconfig=tf.ConfigProto(allow_soft_placeme ...

  10. 对faster rcnn代码讲解的很好的一个

    http://www.cnblogs.com/houkai/p/6824455.html http://blog.csdn.net/u014696921/article/details/6032142 ...

随机推荐

  1. 【洛谷2904/BZOJ1617】[USACO08MAR]跨河River Crossing(动态规划)

    题目:洛谷2904 分析: 裸dp-- dp方程也不难想: \(dp[i]\)表示运\(i\)头牛需要的最短时间,\(sum[i]\)表示一次运\(i\)头牛(往返)所需的时间,则 \[dp[i]=m ...

  2. Appium Appium 链接夜神模拟器

    在此之前,已经安装Appium,参考第一部分在 Windows7 搭建 Appium (一) https://testerhome.com/topics/8004 第一步安装Android开发环境 下 ...

  3. mysql远程服务器访问数据库

    创建一个MySQL用户,并设置可以远程访问 grant usage on *.* to 'fred'@'localhost' identified by 'fred';//创建用户fred密码ferd ...

  4. [转]Android自定义Adapter的ListView的思路及代码

    本文转自:http://www.jb51.net/article/37236.htm 在开发中,我们经常使用到ListView这个控件.Android的API也提供了许多创建ListView适配器的快 ...

  5. 六时车主 App iOS隐私政策

    本应用尊重并保护所有使用服务用户的个人隐私权.为了给您提供更准确.更有个性化的服务,本应用会按照本隐私权政策的规定使用和披露您的个人信息.但本应用将以高度的勤勉.审慎义务对待这些信息.除本隐私权政策另 ...

  6. jmeter解决中文乱码问题

    问题: 当响应数据或响应页面没有设置编码时,jmeter会按照jmeter.properties文件中,sampleresult.default.encoding 设置的格式解析默认ISO-8859- ...

  7. Python 之有道翻译数据抓取

    import requests import time def you_dao(): key = input("请输入要翻译的内容:") # key = "哈哈" ...

  8. PHP 之文件锁解决并发问题

    一.参数说明 $handle: 文件资源 $operation: 锁的类型 LOCK_SH: 共享锁 LOCK_EX: 排他锁 LOCK_UN: 释放锁 $wouldblock: 设置为true的时候 ...

  9. GeckoWebBrowser设置cookie

    var uri = new Uri("http://www.aa.com"); //often cookies are stored on domain level, so &qu ...

  10. linu下nginx的安装

    这里用到的环境是nginx-1.8.0,linux用的是CentOS-7-x86_64-DVD-1804.iso版本 1   什么是nginx Nginx ("engine x") ...