[BZOJ4916]神犇(Monster_Qi)和蒟蒻(SWHsz)
很久很久以前,有一只神犇叫Monster_Qi;
很久很久之后,有一只蒟蒻叫SWHsz;

1<=N<=1E9,A、B模1E9+7;
求这个。
求μ的话直接输出1就行了因为除了1的平方外都有平方因子。
求φ的话就有个显而易见的结论就是\(φ(n^2)=φ(n)n\),列出φ的一般式就行了。
然后就是套杜教筛的模板了。
要凑 \(f \cdot g=h\)
$ h(i)=\sum _{d|i} φ(d)dg(i/d) \(
显而易见的,g是\)id\(函数,\)h(i)=i^2$
然后随便搞了。
#include <iostream>
#include <cstdio>
#include <map>
using namespace std;
map<long long,long long>mp;
long long n;
const int N = 10000005,NI2=500000004,NI6=166666668,mod=1e9+7;
long long ph[N],prime[N],cnt;
bool vis[N];
void phhh() {
ph[1]=1;
for(int i=2; i<=N-5; i++) {
if(!vis[i]) prime[++cnt]=i,ph[i]=i-1;
for(int j=1; j<=cnt; j++) {
if(i*prime[j]<=N-5) vis[i*prime[j]]=1;else break;
if(i%prime[j]==0){ph[i*prime[j]]=ph[i]*prime[j];break;}
else ph[i*prime[j]]=ph[i]*ph[prime[j]];
}
}
for(int i=1;i<=N-5;i++) ph[i]=(ph[i]*i+ph[i-1])%mod;
}
long long solve(long long x) {
if(N-5>=x) return ph[x];
if(mp.count(x)) return mp[x];
long long ans=x*((x+1)%mod)%mod*((2*x%mod+1)%mod)%mod*NI6%mod;
for(long long i=2,nxti;i<=x;i=nxti+1) {
nxti=x/(x/i);
ans=(ans-(nxti+i)%mod*(nxti-i+1ll)%mod*NI2%mod*solve(x/i))%mod;
}
return mp[x]=(ans+mod)%mod;
}
int main() {
phhh();
scanf("%lld",&n);
printf("1\n%lld",solve(n));
}
[BZOJ4916]神犇(Monster_Qi)和蒟蒻(SWHsz)的更多相关文章
- BZOJ4916: 神犇和蒟蒻【杜教筛】
Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...
- BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】
题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...
- LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻
P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...
- BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)
第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...
- Bzoj4916: 神犇和蒟蒻
题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...
- BZOJ4916: 神犇和蒟蒻(杜教筛)
题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...
- [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛
题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...
- 【BZOJ4916】神犇和蒟蒻(杜教筛)
[BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...
- 【BZOJ4916】神犇和蒟蒻 解题报告
[BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...
随机推荐
- Arcengine设置坐标系
转自原文 Arcengine设置坐标系 ArcGIS Engine提供了一系列对象供开发者管理GIS系统的坐标系统. 对大部分开发者而言了解ProjectedCoordinateSystem, Geo ...
- Oracle中如何判断字符串是否全为数字
Oracle中如何判断字符串是否全为数字 学习了:http://www.cnblogs.com/zrcoffee/archive/2012/12/11/2812744.html 本文介绍了判断字符串是 ...
- HDU 5358(2015多校联合训练赛第六场1006) First One (区间合并+常数优化)
pid=5358">HDU 5358 题意: 求∑i=1n∑j=in(⌊log2S(i,j)⌋+1)∗(i+j). 思路: S(i,j) < 10^10 & ...
- mac 下作流程图工具omnigraffle
omnigraffle:http://www.uzzf.com/soft/91710.html 含盖激活码: Name: mojado Serial: JYFE-JRJN-GSOT-GRAG-EVJI ...
- C语言读取文件大量数据到数组
针对.txt文档的大量有规律数据,譬如100行8列的数据将其读取到二维数组(矩阵)中,留作之后的数据处理. 改程序通过宏定义的方法来确定将要读取程序的行数和列数,将数据读取到二维数组data[100] ...
- 车载导航系统中GPS的定位
首先购买的车载导航系统有GPS信号接受功能,能够接收GPS的经纬度信号,然后导航终端里面安装的导航地图能够非常详细的显示详细的经纬度坐标和地物信息.导航终端通过接收器接收到卫星24小时不间断发射的免费 ...
- Linux下叹号!的用法
在定义包含!的字符串变量时,出现了以下提示错误. 注意:在centos系统下错误,在Fedora系统可以正常运行. 修正方法有以下几种: (1)将整个字符串用单引号引起来. (2)在!后添加空格. ( ...
- Java面试-Struts2
1 Struts2工作原理 一个请求在Struts2框架中的处理大概分为下面几个步骤: 1.client初始化一个指向Servlet容器(比如Tomcat)的请求: 2.这个请求经过一系列的过滤器( ...
- ZOJ2588 Burning Bridges 无向图的割边
题目大意:求无向图的割边编号. 割边定义:在一个连通图中,如果删去一个边e,图便变成不连通的两个部分,则e为该图的割边. 求法:边(u,v) 不是割边,当且仅当边(u,v)在一个环内.因此所有不在环内 ...
- ubuntu修改capslock键,单独使用为esc,组合使用时为ctrl+
一.下面这部分可以将capslock与ctrl互换 将下面的代码放入-/.Xmodmap中, remove Lock = Caps_Lock remove Control = Control_L ke ...