HMM隐马尔可夫模型(词语粘合)
HMM用于自然语言处理(NLP)中文分词,是用来描述一个含有隐含未知参数的马尔可夫过程,其目的是希望通过求解这些隐含的参数来进行实体识别,说简单些也就是起到词语粘合的作用。
HMM隐马尔可夫模型包括:
OBS 显现层(observations)
States 隐含层
Start_p 初始概率 P(a)
Trans_p 转移概率 P(b|a)
Emit_p 发射概率
例题:小黑每天根据天气【下雨、晴天】决定当天的活动【散步、购物、清理房间】,她有在朋友圈里发了一条信息“我前天在公园散步,昨天购物,今天清理房间了”,如何根据发的信息推断这三天的天气?

第一天:
【第一天】【散步】=【初始概率,下雨】*【发射概率,散步】=0.6*0.1=0.06
【第一天】【散步】=【初始概率,晴天】*【发射概率,散步】=0.4*0.6=0.24
因为0.24>0.06,第一天可能是晴天
第二天:
【第二天】【购物】=【第一天散步,初始概率,下雨】*【转移概率,下雨】*【发射概率,购物】=0.06*0.7*0.4=0.0168
【第二天】【购物】=【第一天散步,初始概率,下雨】*【转移概率,晴天】*【发射概率,购物】=0.06*0.3*0.3=0.0054
【第二天】【购物】=【第一天散步,初始概率,晴天】*【转移概率,下雨】*【发射概率,购物】=0.24*0.4*0.4=0.0384
【第二天】【购物】=【第一天散步,初始概率,晴天】*【转移概率,晴天】*【发射概率,购物】=0.24*0.6*0.3=0.0432
第一天散步+第二天购物的情况下,第一天可能是晴天,第二天也可能是晴天
第三天:
【第三天】【清理】=【初始概率,晴天,下雨】*【转移概率,下雨】*【发射概率,清理】=0.0384*0.7*0.5=0.01344
【第三天】【清理】=【初始概率,晴天,下雨】*【转移概率,晴天】*【发射概率,清理】=0.0384*0.3*0.1=0.00114
【第三天】【清理】=【初始概率,晴天,晴天】*【转移概率,下雨】*【发射概率,清理】=0.0432*0.4*0.5=0.00864
【第三天】【清理】=【初始概率,晴天,晴天】*【转移概率,晴天】*【发射概率,清理】=0.0432*0.6*0.1=0.00259
【第三天】【清理】=【初始概率,下雨,下雨】*【转移概率,下雨】*【发射概率,清理】=0.0168*0.7*0.5=0.00588
【第三天】【清理】=【初始概率,下雨,下雨】*【转移概率,晴天】*【发射概率,清理】=0.0168*0.3*0.1=0.00050
【第三天】【清理】=【初始概率,下雨,晴天】*【转移概率,下雨】*【发射概率,清理】=0.0054*0.4*0.5=0.00108
【第三天】【清理】=【初始概率,下雨,晴天】*【转移概率,晴天】*【发射概率,清理】=0.0054*0.6*0.1=0.00032
第一天散步+第二天购物+第三天打扫的情况下,第一天晴天,第二天下雨,第三天下雨概率最大
用Python实现:


# Python -version 3.5以上版本
# 打印路径概率表
def print_dptable(V):
print (" ",)
for i in range(len(V)):
print ("%7d" % i,)
print ()
for y in V[0].keys():
print ("%.5s: " % y,)
for t in range(len(V)):
print ("%.7s" % ("%f" % V[t][y]),)
print ()
def viterbi(obs, states, start_p, trans_p, emit_p):
# 路径概率表 V[时间][隐含层] = 概率
V = [{}]
# 中间变量
path = {}
# 状态初始化 (t == 0)
for y in states:
V[0][y] = start_p[y] * emit_p[y][obs[0]]
path[y] = [y]
# 对 t > 0 跑一遍维特比算法
for t in range(1, len(obs)):
V.append({})
newpath = {}
for y in states:
# 概率 隐含层 = 前状态是y0的初始概率 * y0转移到y的转移概率 * y表现为当前状态的发射概率
(prob, state) = max([(V[t - 1][y0] * trans_p[y0][y] * emit_p[y][obs[t]], y0) for y0 in states])
# 记录最大概率
V[t][y] = prob
# 记录路径
newpath[y] = path[state] + [y]
path = newpath
print_dptable(V)
(prob, state) = max([(V[len(obs) - 1][y], y) for y in states])
return (prob, path[state])
# HMM 实例导入
states = ('Rainy', 'Sunny')
observations = ('walk', 'shop', 'clean')
start_probability = {'Rainy': 0.6, 'Sunny': 0.4}
transition_probability = {
'Rainy': {'Rainy': 0.7, 'Sunny': 0.3},
'Sunny': {'Rainy': 0.4, 'Sunny': 0.6},
}
emission_probability = {
'Rainy': {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
'Sunny': {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
}
def example():
#将实例值传输到viterbi函数
return viterbi(observations,
states,
start_probability,
transition_probability,
emission_probability
)
print (example())
HMM隐马尔可夫模型(词语粘合)的更多相关文章
- HMM隐马尔可夫模型来龙去脉(一)
目录 隐马尔可夫模型HMM学习导航 一.认识贝叶斯网络 1.概念原理介绍 2.举例解析 二.马尔可夫模型 1.概念原理介绍 2.举例解析 三.隐马尔可夫模型 1.概念原理介绍 2.举例解析 四.隐马尔 ...
- HMM隐马尔可夫模型来龙去脉(二)
目录 前言 预备知识 一.估计问题 1.问题推导 2.前向算法/后向算法 二.序列问题 1.问题推导 2.维特比算法 三.参数估计问题 1.问题推导 2.期望最大化算法(前向后向算法) 总结 前言 H ...
- HMM隐马尔科夫模型
这是一个非常重要的模型,凡是学统计学.机器学习.数据挖掘的人都应该彻底搞懂. python包: hmmlearn 0.2.0 https://github.com/hmmlearn/hmmlearn ...
- 机器学习-HMM隐马尔可夫模型-笔记
HMM定义 1)隐马尔科夫模型 (HMM, Hidden Markov Model) 可用标注问题,在语音识别. NLP .生物信息.模式识别等领域被实践证明是有效的算法. 2)HMM 是关于时序的概 ...
- 自然语言处理(1)-HMM隐马尔科夫模型基础概念(一)
隐马尔科夫模型HMM 序言 文本序列标注是自然语言处理中非常重要的一环,我先接触到的是CRF(条件随机场模型)用于解决相关问题,因此希望能够对CRF有一个全面的理解,但是由于在学习过程中发现一个算法像 ...
- HMM 隐马尔科夫模型
参考如下博客: http://www.52nlp.cn/itenyh%E7%89%88-%E7%94%A8hmm%E5%81%9A%E4%B8%AD%E6%96%87%E5%88%86%E8%AF%8 ...
- HMM:隐马尔可夫模型HMM
http://blog.csdn.net/pipisorry/article/details/50722178 隐马尔可夫模型 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模 ...
- 隐马尔可夫模型(Hidden Markov Model)
隐马尔可夫模型(Hidden Markov Model) 隐马尔可夫模型(Hidden Markov Model, HMM)是一个重要的机器学习模型.直观地说,它可以解决一类这样的问题:有某样事物存在 ...
- 隐马尔科夫模型HMM学习最佳范例
谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google ...
随机推荐
- BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)
手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...
- 只读事务(@Transactional(readOnly = true))的一些概念
念:从这一点设置的时间点开始(时间点a)到这个事务结束的过程中,其他事务所提交的数据,该事务将看不见!(查询中不会出现别人在时间点a之后提交的数据) 应用场合: 如果你一次执行单条查询语句,则没有必要 ...
- /tmp目录下执行脚本失败提示Permission denied
Linux上执行Shell脚本运行失败提示Permission denied一个问题,挺好的问题,切中了知识盲点. 问题现象 Shell脚本在/tmp目录下,执行./test.sh运行失败,提示Per ...
- 洛谷 P1463 [SDOI2005]反素数ant
P1463 [SDOI2005]反素数ant 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i< ...
- 10317 Fans of Footbal Teams
10317 Fans of Footbal Teams 时间限制:1000MS 内存限制:65535K提交次数:0 通过次数:0 题型: 编程题 语言: G++;GCC Description ...
- 64位只有一种调用约定stdcall
procedure TForm2.Button1Click(Sender: TObject); function EnumWindowsProc(Ahwnd: hwnd; AlParam: lPara ...
- badboy提示脚本错误解决方法
1.输入URL,提示脚本错误 解决办法:打开IE浏览器,工具->internet选项->高级,如图所示去掉禁用脚本调试 2.badboy内置浏览器,提示脚本错误解决办法 解决办法:badb ...
- Linux - Nginx配置反向代理。
Nginx配置反向代理. 准备两台服务器 http://192.168.70.66 http://192.168.70.62 设置正则匹配(192.168.70.66) vim /usr/local/ ...
- hdoj--1083--Courses(最大匹配)
Courses Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- Node.js:目录
ylbtech-Node.js:目录 1.返回顶部 2.返回顶部 3.返回顶部 4.返回顶部 5.返回顶部 1. http://www.runoob.com/nodejs/nodejs ...