题意:

将192分别与1、2、3相乘:

192 × 1 = 192
192 × 2 = 384
192 × 3 = 576

连接这些乘积,我们得到一个1至9全数字的数192384576。我们称192384576为192和(1,2,3)的连接乘积。

同样地,将9分别与1、2、3、4、5相乘,得到1至9全数字的数918273645,即是9和(1,2,3,4,5)的连接乘积。

对于n > 1,所有某个整数和(1,2, … ,n)的连接乘积所构成的数中,最大的1至9全数字的数是多少?


/*************************************************************************
> File Name: euler038.c
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年06月27日 星期二 09时57分22秒
************************************************************************/ #include <stdio.h>
#include <math.h>
#include <inttypes.h> #define max(a,b) ((a)>(b)?(a):(b)) bool IsPandigitalMultiples (int32_t n , int32_t* result) {
int32_t ret = 0 , a[10] = {0};
int32_t num = 0 , i = 1 , x;
while (num < 9) {
x = n * i;
while (x) {
if (a[x % 10]) return false;
if (x % 10 == 0) return false;
a[x % 10] = (++num); // 将记录位数和判断数组代码相结合,省去了a[x % 10] = 1 and ++num
x /= 10;
}
ret *= (int32_t)pow(10 , (int32_t)floor(log10(n * i) + 1));
ret += n * i;
++i;
}
(*result) = ret;
return true;
}
int32_t main() {
int32_t ans = 0 , result;
for (int32_t i = 1 ; i <= 10000 ; i++) {
if (!IsPandigitalMultiples(i , &result)) continue;
if (ans < result) ans = result;
printf("%d\n",i);
}
printf("%d\n",ans);
return 0;
}

Project Euler 38 Pandigital multiples的更多相关文章

  1. Project Euler 104:Pandigital Fibonacci ends 两端为全数字的斐波那契数

    Pandigital Fibonacci ends The Fibonacci sequence is defined by the recurrence relation: F[n] = F[n-1 ...

  2. 【Project Euler 1】Multiples of 3 and 5

    题目要求是: If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and ...

  3. Project Euler 41 Pandigital prime( 米勒测试 + 生成全排列 )

    题意:如果一个n位数恰好使用了1至n每个数字各一次,我们就称其为全数字的.例如,2143就是一个4位全数字数,同时它恰好也是一个素数. 最大的全数字的素数是多少? 思路: 最大全排列素数可以从 n = ...

  4. Project Euler 32 Pandigital products

    题意:找出所有形如 39 × 186 = 7254 这种,由 1 - 9,9个数字构成的等式的和,注意相同的积不计算两次 思路:如下面两种方法 方法一:暴力枚举间断点 /*************** ...

  5. Project Euler 52: Permuted multiples

    可以看到数字125874的两倍251748和它有着完全相同的数字,只是顺序不同而已.求一个最小的正整数\(x\),使得\(2x,3x,4x,5x,6x\)都有完全相同的数字. 分析:此题的思路比较直接 ...

  6. Python练习题 029:Project Euler 001:3和5的倍数

    开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...

  7. Project Euler 第一题效率分析

    Project Euler: 欧拉计划是一系列挑战数学或者计算机编程问题,解决这些问题需要的不仅仅是数学功底. 启动这一项目的目的在于,为乐于探索的人提供一个钻研其他领域并且学习新知识的平台,将这一平 ...

  8. Python练习题 039:Project Euler 011:网格中4个数字的最大乘积

    本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...

  9. [project euler] program 4

    上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...

随机推荐

  1. AT+CSMP 设置短消息文本参数

    AT+CSMP 设置短消息文本参数 2009-05-18 12:03 AT+CSMP 设置短消息文本参数(text模式下) 设置:AT+CSMP=<fo>,<vp/scts>, ...

  2. 0208如何利用federated配置远程的数据库和本地数据相互交互

    -- 第一步修改本地数据库的配置文件,让其支持federated存储引擎,在[mysqld]配置文件下面增加federated[注意不能写成大写]-- federated -- 第二步创建一个数据库, ...

  3. 洛谷 P2121 拆地毯

    P2121 拆地毯 题目背景 还记得 NOIP 2011 提高组 Day1 中的铺地毯吗?时光飞逝,光阴荏苒,三年过去了.组织者精心准备的颁奖典礼早已结束,留下的则是被人们踩过的地毯.请你来解决类似于 ...

  4. Cocos2d-x《雷电大战》(3)-子弹无限发射

    林炳文Evankaka原创作品.转载请注明出处http://blog.csdn.net/evankaka 本文要实现雷电游戏中,游戏一開始,英雄飞机就无限发射子弹的功能. 这里的思想是单独给子弹弄一个 ...

  5. hdu1829 A Bug&#39;s Life(并查集)

    开两个并查集.然后合并的时候要合并两次.这样在合并之前推断是否冲突,假设不冲突就进行合并,否则不须要继续合并. #include<cstdio> #include<cstdlib&g ...

  6. luogu1024 一元三次方程求解

    题目大意 已知一元三次方程\(ax^3+bx^2+cx+d=0\): 有且只有3个根 对\(\forall x, x\in[-100,100]\) 对\(\forall x_1,x_2,|x_1-x_ ...

  7. Spring中JdbcTemplate中使用RowMapper

    转自:https://blog.csdn.net/u012661010/article/details/70049633 1 sping中的RowMapper可以将数据中的每一行数据封装成用户定义的类 ...

  8. AtCoder Beginner Contest 054

    1. A - One Card Poker 水题,直接输出大小. 2. B - Template Matching 暴力,每个位置枚举,比较. 3. C - One-stroke Path n的大小只 ...

  9. OpenCV+VS 2015开发环境配置

    最近跑C程序,头文件中用到了OpenCV中的文件,找了很多篇OpenCV+VS的环境配置,发现如下这篇写的最为详细,特转载来自己的博客中留存,并附上原博客地址如下 OpenCV学习笔记(一)——Ope ...

  10. Java多线程编程那些事:volatile解惑--转

    http://www.infoq.com/cn/articles/java-multi-thread-volatile/ 1. 前言 volatile关键字可能是Java开发人员“熟悉而又陌生”的一个 ...