一、AlexNet:共8层:5个卷积层(卷积+池化)、3个全连接层,输出到softmax层,产生分类。

论文中lrn层推荐的参数:depth_radius = 4,bias = 1.0 , alpha = 0.001 / 9.0 , beta = 0.75

lrn现在仅在AlexNet中使用,主要是别的卷积神经网络模型效果不明显。而LRN在AlexNet中会让前向和后向速度下降,(下降1/3)。

【训练时耗时是预测的3倍】

代码:

#加载数据
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/",one_hot = True) #定义卷积操作
def conv2d(name , input_x , w , b , stride = 1,padding = 'SAME'):
conv = tf.nn.conv2d(input_x,w,strides = [1,stride,stride,1],padding = padding , name = name)
return tf.nn.relu(tf.nn.bias_add(conv,b))
def max_pool(name , input_x , k=2):
return tf.nn.max_pool(input_x,ksize = [1,k,k,1],strides = [1,k,k,1],padding = 'SAME' , name = name)
def norm(name , input_x , lsize = 4):
return tf.nn.lrn(input_x , lsize , bias = 1.0 , alpha = 0.001 / 9.0 , beta = 0.75 , name = name) def buildGraph(x,learning_rate,weight,bias,dropout): #############前向传播##################
#定义网络
x = tf.reshape(x , [-1,28,28,1])
#第一层卷积
with tf.variable_scope('layer1'):
conv1 = conv2d('conv1',x,weight['wc1'],bias['bc1'])
pool1 = max_pool('pool1',conv1)
norm1 = norm('norm1',pool1)
with tf.variable_scope('layer2'):
conv2 = conv2d('conv2',norm1,weight['wc2'],bias['bc2'])
pool2 = max_pool('pool2',conv2)
norm2 = norm('norm2',pool2)
with tf.variable_scope('layer3'):
conv3 = conv2d('conv3',norm2,weight['wc3'],bias['bc3'])
pool3 = max_pool('pool3',conv3)
norm3 = norm('norm3',pool3)
with tf.variable_scope('layer4'):
conv4 = conv2d('conv4',norm3,weight['wc4'],bias['bc4'])
with tf.variable_scope('layer5'):
conv5 = conv2d('conv5',conv4,weight['wc5'],bias['bc5'])
pool5 = max_pool('pool5',conv5)
norm5 = norm('norm5',pool5)
with tf.variable_scope('func1'):
norm5 = tf.reshape(norm5,[-1,4*4*256])
fc1 = tf.add(tf.matmul(norm5,weight['wf1']) , bias['bf1'])
fc1 = tf.nn.relu(fc1)
#dropout
fc1 = tf.nn.dropout(fc1,dropout)
with tf.variable_scope('func2'):
fc2 = tf.reshape(fc1,[-1,weight['wf1'].get_shape().as_list()[0]])
fc2 = tf.add(tf.matmul(fc1,weight['wf2']),bias['bf2'])
fc2 = tf.nn.relu(fc2)
#dropout
fc2 = tf.nn.dropout(fc2,dropout)
with tf.variable_scope('outlayer'):
out = tf.add(tf.matmul(fc2,weight['w_out']),bias['b_out'])
return out def train(mnist):
#定义网络的超参数
learning_rate = 0.001
training_step = 20000
batch_size = 128 #定义网络的参数
n_input = 784
n_output = 10
dropout = 0.75 #x、y的占位
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32) #权重和偏置的设置
weight = {
'wc1':tf.Variable(tf.truncated_normal([11,11,1,96],stddev = 0.1)),
'wc2':tf.Variable(tf.truncated_normal([5,5,96,256],stddev = 0.1)),
'wc3':tf.Variable(tf.truncated_normal([3,3,256,384],stddev = 0.1)),
'wc4':tf.Variable(tf.truncated_normal([3,3,384,384],stddev = 0.1)),
'wc5':tf.Variable(tf.truncated_normal([3,3,384,256],stddev = 0.1)),
'wf1':tf.Variable(tf.truncated_normal([4*4*256,4096])),
'wf2':tf.Variable(tf.truncated_normal([4096,4096])),
'w_out':tf.Variable(tf.truncated_normal([4096,10]))
}
bias = {
'bc1':tf.Variable(tf.constant(0.1,shape = [96])),
'bc2':tf.Variable(tf.constant(0.1,shape =[256])),
'bc3':tf.Variable(tf.constant(0.1,shape =[384])),
'bc4':tf.Variable(tf.constant(0.1,shape =[384])),
'bc5':tf.Variable(tf.constant(0.1,shape =[256])),
'bf1':tf.Variable(tf.constant(0.1,shape =[4096])),
'bf2':tf.Variable(tf.constant(0.1,shape =[4096])),
'b_out':tf.Variable(tf.constant(0.1,shape =[10]))
} out = buildGraph(x,learning_rate,weight,bias,keep_prob)
####################后向传播####################
#定义损失函数
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=out))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss) #评估函数
correction = tf.equal(tf.argmax(out,1),tf.argmax(y,1))
acc = tf.reduce_mean(tf.cast(correction,tf.float32))
#####################################开始训练############################## init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
step = 1
while step <= training_step:
batch_x , batch_y = mnist.train.next_batch(batch_size)
sess.run(out,feed_dict = {x:batch_x,y:batch_y,keep_prob:dropout})
print(out.shape)
sess.run(optimizer,feed_dict = {x:batch_x,y:batch_y,keep_prob:dropout})
if step % 500 == 0:
loss , acc = sess.run([loss,acc],feed_dict = {x:batch_x,y:batch_y,keep_prob:1})
print(step,loss,acc)
step += 1
print(sess.run(acc,feed_dict = {x:mnist.test.images[:256],y:mnist.test.images[:256],keep_prob:1})) if __name__=='__main__':
train(mnist)

TensorFlow技术解析与实战学习笔记(13)------Mnist识别和卷积神经网络AlexNet的更多相关文章

  1. TensorFlow技术解析与实战学习笔记(15)-----MNIST识别(LSTM)

    一.任务:采用基本的LSTM识别MNIST图片,将其分类成10个数字. 为了使用RNN来分类图片,将每张图片的行看成一个像素序列,因为MNIST图片的大小是28*28像素,所以我们把每一个图像样本看成 ...

  2. 学习TF:《TensorFlow技术解析与实战》PDF+代码

    TensorFlow 是谷歌公司开发的深度学习框架,也是目前深度学习的主流框架之一.<TensorFlow技术解析与实战>从深度学习的基础讲起,深入TensorFlow框架原理.模型构建. ...

  3. TensorFlow+实战Google深度学习框架学习笔记(12)------Mnist识别和卷积神经网络LeNet

    一.卷积神经网络的简述 卷积神经网络将一个图像变窄变长.原本[长和宽较大,高较小]变成[长和宽较小,高增加] 卷积过程需要用到卷积核[二维的滑动窗口][过滤器],每个卷积核由n*m(长*宽)个小格组成 ...

  4. 《Tensorflow技术解析与实战》第四章

    Tensorflow基础知识 Tensorflow设计理念 (1)将图的定义和图的运行完全分开,因此Tensorflow被认为是一个"符合主义"的库 (2)Tensorflow中涉 ...

  5. 学习笔记TF058:人脸识别

    人脸识别,基于人脸部特征信息识别身份的生物识别技术.摄像机.摄像头采集人脸图像或视频流,自动检测.跟踪图像中人脸,做脸部相关技术处理,人脸检测.人脸关键点检测.人脸验证等.<麻省理工科技评论&g ...

  6. 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...

  7. SQL反模式学习笔记13 使用索引

    目标:优化性能 改善性能最好的技术就是在数据库中合理地使用索引.  索引也是数据结构,它能使数据库将指定列中的某个值快速定位在相应的行. 反模式:无规划的使用索引 1.不使用索引或索引不足 2.使用了 ...

  8. Elasticsearch技术解析与实战 PDF (内含目录)

    Elasticsearch技术解析与实战                                  介绍: Elasticsearch是一个强[0大0]的搜索引擎,提供了近实时的索引.搜索.分 ...

  9. elasticsearch技术解析与实战ES

    elasticsearch技术解析与实战ES 下载地址: https://pan.baidu.com/s/1NpPX05C0xKx_w9gBYaMJ5w 扫码下面二维码关注公众号回复100008 获取 ...

随机推荐

  1. Windows 安装react native

    1.下载node.js (https://nodejs.org/en/) 2.安装node.js,安装完成后按住 图标键+R ,输入CMD进入命令行终端,输入npm -v C:\Users\Admin ...

  2. 洛谷 P1197 BZOJ 1015 [JSOI2008]星球大战 (ZOJ 3261 Connections in Galaxy War)

    这两道题长得差不多,都有分裂集合的操作,都是先将所有操作离线,然后从最后一步开始倒着模拟,这样一来,分裂就变成合并,也就是从打击以后最终的零散状态,一步步合并,回到最开始所有星球都被连为一个整体的状态 ...

  3. 译:滑雪租赁问题(ski rental problem)

         本文翻译自维基百科词条:http://en.wikipedia.org/wiki/Ski_rental_problem 滑雪租赁问题(ski rental problem)是一类问题的总称, ...

  4. LInux下实时网络流量监控工具nload教程

    https://jingyan.baidu.com/article/642c9d340cbef0644a46f72a.html http://blog.csdn.net/u014171641/arti ...

  5. centos 解压压缩包到指定目录

    解压.tar.gz文件: tar -zxvf web.tar.gz tar不支付解压文件到指定的目录! 解压.war .zip文件到指定目录: unzip web.war -d webapps/ROO ...

  6. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  7. UVA 10025(数学)

     The ? 1 ? 2 ? ... ? n = k problem  The problem Given the following formula, one can set operators ' ...

  8. cocos2d-x的gitignore配置

    # Ignore thumbnails created by windows Thumbs.db # Ignore files build by Visual Studio *.obj *.exe * ...

  9. element-UI中table表格的row-click事件怎么获取一行数据的id

    <el-table :data="tableData" style="width: 100%" @row-click="openDetails( ...

  10. axis2调用webservice教训

    总结教训,axis2client调用WS接口时url不能加?wsdl,而用cxf调用时则要加上. 今天用axis2的RpcServerClient调用https的webservice接口,在设置完op ...