Network
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 9434   Accepted: 3511

Description

A network administrator manages a large network. The network consists of N computers and M links between pairs of computers. Any pair of computers are connected directly or indirectly by successive links, so data can be transformed between any two computers. The administrator finds that some links are vital to the network, because failure of any one of them can cause that data can't be transformed between some computers. He call such a link a bridge. He is planning to add some new links one by one to eliminate all bridges.

You are to help the administrator by reporting the number of bridges in the network after each new link is added.

Input

The input consists of multiple test cases. Each test case starts with a line containing two integers N(1 ≤ N ≤ 100,000) and M(N - 1 ≤ M ≤ 200,000).
Each of the following M lines contains two integers A and B ( 1≤ A ≠ B ≤ N), which indicates a link between computer A and B. Computers are numbered from 1 to N. It is guaranteed that any two computers are connected in the initial network.
The next line contains a single integer Q ( 1 ≤ Q ≤ 1,000), which is the number of new links the administrator plans to add to the network one by one.
The i-th line of the following Q lines contains two integer A and B (1 ≤ A ≠ B ≤ N), which is the i-th added new link connecting computer A and B.

The last test case is followed by a line containing two zeros.

Output

For each test case, print a line containing the test case number( beginning with 1) and Q lines, the i-th of which contains a integer indicating the number of bridges in the network after the first i new links are added. Print a blank line after the output for each test case.

Sample Input

3 2
1 2
2 3
2
1 2
1 3
4 4
1 2
2 1
2 3
1 4
2
1 2
3 4
0 0

Sample Output

Case 1:
1
0 Case 2:
2
0

Source

原题大意:输入点的个数N和边的个数M,接下来输入整数Q代表询问的次数,之后Q行有两个整数A,B,表示将A与B相连。问每次询问后割边(桥)的数量。
解题思路1:用tarjian找割边并标记,之后用lca遍历A与B到最近公共祖先的路径,这段路上是割边的处理掉,总数-1就可以了。
                表示用链表写的,各种慢,但是POJ数据太弱了,怎么写都能过。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct list
{
int v;
list *next;
};
list *head[110010],*rear[110010];
int father[110010],times,dfn[110010],low[110010],bridge[110010],bridgenum,n;
int dep[110010];
void init()
{
int i;
memset(head,0,sizeof(head));
memset(dep,0,sizeof(dep));
memset(rear,0,sizeof(rear));
for(i=1;i<=n;++i) father[i]=i;
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(bridge,0,sizeof(bridge));
times=bridgenum=0;
}
void insert(int a,int b)
{
if(rear[a]!=NULL)
{
rear[a]->next=new list;
rear[a]=rear[a]->next;
} else head[a]=rear[a]=new list;
rear[a]->v=b;
rear[a]->next=NULL;
return;
}
void tarjian(int v)
{
bool flag=true;
dfn[v]=low[v]=++times;
dep[v]=dep[father[v]]+1;
for(list *p=head[v];p!=NULL;p=p->next)
{
if(p->v==father[v]&&flag)
{
flag=false;
continue;
}
if(!dfn[p->v])
{
father[p->v]=v;
tarjian(p->v);
low[v]=min(low[v],low[p->v]);
if(low[p->v]>dfn[v])
{
++bridgenum;
bridge[p->v]=1;
}
}else low[v]=min(low[v],dfn[p->v]);
}
}
void lca(int a,int b)
{
if(dep[a]<dep[b]) swap(a,b);
while(dep[a]!=dep[b])
{
if(bridge[a])
{
bridge[a]=0;
--bridgenum;
}
a=father[a];
}
while(a!=b)
{
if(bridge[a])
{
bridge[a]=0;
--bridgenum;
}
if(bridge[b])
{
bridge[b]=0;
--bridgenum;
}
a=father[a];
b=father[b];
}
return;
}
int main()
{
int m,i,a,b,q,ccase=0;
while(~scanf("%d%d",&n,&m),n&&m)
{
init();
for(i=0;i<m;++i)
{
scanf("%d%d",&a,&b);
insert(a,b);insert(b,a);
}
tarjian(1);
scanf("%d",&q);
printf("Case %d:\n",++ccase);
for(i=1;i<=q;++i)
{
scanf("%d%d",&a,&b);
lca(a,b);
printf("%d\n",bridgenum);
}
}
return 0;
}

解题思路2:在原来的基础上用并查集优化,这种做法是看了大神们的解题思路写出的。

将双连通的两个点弄成一个集合,这样在LCA时只要判断是否是一个集合,将桥的数量减去即可。

#include<stdio.h>
#include<string.h>
struct list
{
int v;
list *next;
};
list *head[111010],*rear[111010];
int n,m,father[111010],dep[110010],low[110010],fath[110010],bridgenum;
void init()
{
int i;
memset(head,0,sizeof(head));
memset(rear,0,sizeof(rear));
memset(dep,0,sizeof(dep));
memset(low,0,sizeof(low));
memset(fath,0,sizeof(fath));
for(i=1;i<=n;++i) father[i]=i;
bridgenum=0;
}
void insert(int a,int b)
{
if(rear[a]!=NULL)
{
rear[a]->next=new list;
rear[a]=rear[a]->next;
} else head[a]=rear[a]=new list;
rear[a]->v=b;
rear[a]->next=NULL;
}
int find(int x)
{
return father[x]==x?x:father[x]=find(father[x]);
}
void merge(int x,int y)
{
int fx=find(x);
int fy=find(y);
if(fx!=fy) father[fx]=fy;
}
void tarjian(int v,int deps)
{
bool flag=true;
dep[v]=low[v]=deps;
for(list *p=head[v];p!=NULL;p=p->next)
{
if(p->v==fath[v]&&flag)
{
flag=false;
continue;
}
if(!dep[p->v])
{
fath[p->v]=v;
tarjian(p->v,deps+1);
if(low[v]>low[p->v]) low[v]=low[p->v];
if(low[p->v]<=dep[v]) merge(p->v,v);
else bridgenum++;
}
else if(low[v]>dep[p->v]) low[v]=dep[p->v];
}
}
void judge(int v)
{
int x=find(v);
int y=find(fath[v]);
if(x!=y)
{
--bridgenum;
father[x]=y;
}
}
void lca(int u,int v)
{
while(dep[u]>dep[v])
{
judge(u);
u=fath[u];
}
while(dep[u]<dep[v])
{
judge(v);
v=fath[v];
}
while(u!=v)
{
judge(u);judge(v);
u=fath[u];v=fath[v];
}
}
int main()
{
int a,b,q,num=0;
while(~scanf("%d%d",&n,&m))
{
if(n==0&&m==0) break;
init();
while(m--)
{
scanf("%d%d",&a,&b);
insert(a,b);insert(b,a);
}
printf("Case %d:\n",++num);
tarjian(1,1);
scanf("%d",&q);
while(q--)
{
scanf("%d%d",&a,&b);
if(find(a)!=find(b)) lca(a,b);
printf("%d\n",bridgenum);
}
printf("\n");
}
return 0;
}

  

[双连通分量] POJ 3694 Network的更多相关文章

  1. Poj 3694 Network (连通图缩点+LCA+并查集)

    题目链接: Poj 3694 Network 题目描述: 给出一个无向连通图,加入一系列边指定的后,问还剩下多少个桥? 解题思路: 先求出图的双连通分支,然后缩点重新建图,加入一个指定的边后,求出这条 ...

  2. poj 3694 Network 边双连通+LCA

    题目链接:http://poj.org/problem?id=3694 题意:n个点,m条边,给你一个连通图,然后有Q次操作,每次加入一条边(A,B),加入边后,问当前还有多少桥,输出桥的个数. 解题 ...

  3. poj 3694 Network(割边+lca)

    题目链接:http://poj.org/problem?id=3694 题意:一个无向图中本来有若干条桥,有Q个操作,每次加一条边(u,v),每次操作后输出桥的数目. 分析:通常的做法是:先求出该无向 ...

  4. POJ 3694——Network——————【连通图,LCA求桥】

    Network Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  5. [双连通分量] POJ 3177 Redundant Paths

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13712   Accepted: 5821 ...

  6. poj 3694 Network(双连通分量)

    题目:http://poj.org/problem?id=3694 #include <iostream> #include <cstring> #include <cs ...

  7. POJ 3694 Network 无向图双联通+LCA

    一开始题目没看清楚,以为是增加那条边后还有多少桥,所以就当做是无向图tarjan缩点后建树,然后求u,v的最近公共祖先,一直wa. 后来再看题目后才发现边放上去后不会拿下来了,即增加i条边后桥的数量. ...

  8. POJ 3694 Network (tarjan + LCA)

    题目链接:http://poj.org/problem?id=3694 题意是给你一个无向图n个点,m条边,将m条边连接起来之后形成一个图,有Q个询问,问将u和v连接起来后图中还有多少个桥. 首先用t ...

  9. poj 3694 Network : o(n) tarjan + O(n) lca + O(m) 维护 总复杂度 O(m*q)

    /** problem: http://poj.org/problem?id=3694 问每加一条边后剩下多少桥 因为是无向图,所以使用tarjan缩点后会成一棵树并维护pre数组 在树上连一条边(a ...

随机推荐

  1. (一)s3c2440 地址分配讲解 (很难很纠结)

    mini2440的地址怎么分配.mini2440处理器的地址怎么分配. S3C2440处理器可以使用的物理地址空间可以达到4GB,其中前1GB的地址(也就是0x0000 0000--0x4000 00 ...

  2. paper 97:异质人脸识别进展的资讯

    高新波教授团队异质人脸图像识别研究取得新突破,有望大大降低刑侦过程人力耗费并提高办案效率         近日,西安电子科技大学高新波教授带领的研究团队,在异质人脸图像识别研究领域取得重要进展,其对香 ...

  3. js setInterval

    var monitorInterval = null;    //检索cs 是否处理完成 开始: monitorInterval = setInterval(function () { CheckCS ...

  4. Mvc请求管道中的19个事件

    下面是请求管道中的19个事件. (1)BeginRequest: 开始处理请求 (2)AuthenticateRequest授权验证请求,获取用户授权信息 (3):PostAuthenticateRe ...

  5. Linux 多线程编程 实例 1

    子线程循环 10 次,接着主线程循环 100 次,接着又回到子线程循环 10 次,接着再回到主线程又循环 100 次,如此循环50次,试写出代码. #include <pthread.h> ...

  6. wex5 教程 之 图文讲解 bind-css和bind-sytle的异同

    wex5作为网页开发利器,在前台UI数据交互设计中大量使用了绑定技术,即官方视频教学中也提到了KO,实质是数据绑定与追踪.在前台组件的属性中,为我们提供了两个重要的样式绑定属性,bind-css和bi ...

  7. jquery判断id是否存在

    1.判断标签是否存在 ){ 存在 } 2.判断(id="id名"的标签)是否存在,下面的不可以!!!因为 $("#id") 不管对象是否存在都会返回 objec ...

  8. 安装Ifconfig

    1.ifconfig 2.whereis 检查 3.yum search ifconfig 4.分割线下面让我们安装 net-tools.x86_64 执行 yum -y install net-to ...

  9. map函数

    概述 map() 方法返回一个由原数组中的每个元素调用一个指定方法后的返回值组成的新数组. 语法 array.map(callback[, thisArg]) 参数 callback 原数组中的元素经 ...

  10. ipad开发:二维码扫描,摄像头旋转角度问题解决办法

    之前一直是在手机上开发,用系统原生二维码扫描功能,一点问题都没有,但是在ipad上,用户是横屏操作的,虽然界面旋转了,是横屏的,但是摄像头里显示的依然是竖屏效果,也就是说从摄像头里看到的和人眼看到的内 ...