[问题2014A11] 解答
[问题2014A11] 解答
我们需要利用以下关于幂等阵判定的结论,它是复旦高代书第 142 页的例 3.6.4:
结论 设 \(A\) 为 \(n\) 阶方阵, 则 \(A^2=A\) 当且仅当 \(\mathrm{r}(A)+\mathrm{r}(I_n-A)=n\).
由题中两个条件和上述结论可得
\[n=\mathrm{r}(A+B)+\mathrm{r}(I_n-(A+B))=\mathrm{r}(A)+\mathrm{r}(B)+\mathrm{r}(I_n-A-B).\cdots(1)\]
证法一 (利用分块初等变换)
构造如下分块对角阵, 并对其实施分块初等变换, 可得
\[\begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & I_n-A-B \end{pmatrix}\to\begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ A & B & I_n-A-B \end{pmatrix}\to\begin{pmatrix} A & 0 & A \\ 0 & B & B \\ A & B & I_n \end{pmatrix}\]
\[\to\begin{pmatrix} A-A^2 & -AB & 0 \\ -BA & B-B^2 & 0 \\ A & B & I_n \end{pmatrix}\to\begin{pmatrix} A-A^2 & -AB & 0 \\ -BA & B-B^2 & 0 \\ 0 & 0 & I_n \end{pmatrix}.\]
注意到分块初等变换不改变矩阵的秩, 故由 (1) 式可得 \(\mathrm{r}\begin{pmatrix} A-A^2 & -AB \\ -BA & B-B^2 \end{pmatrix}=0\), 从而我们有 \(A^2=A\), \(B^2=B\), \(AB=BA=0\).
证法二 (由张钧瑞同学提供, 利用秩的不等式)
主要思路是反复利用秩的不等式 \(\mathrm{r}(A)+\mathrm{r}(B)\geq \mathrm{r}(A+B)\) (复旦高代书第 144 页习题 5(3)) 以及幂等阵判定的结论. 由 (1) 式可得
\[n\geq \mathrm{r}(A)+\mathrm{r}(I_n-A)\geq \mathrm{r}(I_n)=n,\]
所以上述不等式只能取等号, 从而 \(A\) 是幂等阵. 同理可证 \(B\) 也是幂等阵. 最后, 由 \((A+B)^2=A+B\), \(A^2=A\), \(B^2=B\) 可得 \(AB=BA=0\), 这是[问题2014A04] 的第一小题. \(\Box\)
注 本题的几何版本见复旦高代书第 208 页复习题 34, 所以本题也有第三种几何的证法, 具体证明请参考复旦高代白皮书 (第二版) 第 131 页例 4.45.
[问题2014A11] 解答的更多相关文章
- 精选30道Java笔试题解答
转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...
- 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团
精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...
- 【字符编码】Java字符编码详细解答及问题探讨
一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...
- spring-stutrs求解答
这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...
- JavaScript Bind()趣味解答 包懂~~
首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...
- CMMI4级实践中的5个经典问题及解答
这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是: A.流程,子流程部分不明白 ...
- 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final
1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...
- 知乎大牛的关于JS解答
很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...
- [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)
[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1) 当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...
随机推荐
- 一整套WordPress模板制作的教程
WordPress基本模板文件 一套完整的WordPress模板应至少具有如下文件:style.css: CSS(样式表)文件index.php : 主页模板archive.php : Archive ...
- JavaScript入门篇 第三天(认识DOM)
认识DOM 文档对象模型DOM(Document Object Model)定义访问和处理HTML文档的标准方法.DOM 将HTML文档呈现为带有元素.属性和文本的树结构(节点树). 先来看看下面代码 ...
- WEB应用中的普通Java程序如何读取资源文件
package cn.itcast; import java.io.IOException; import java.io.PrintWriter; import javax.servlet.Serv ...
- 【iCore3 双核心板】例程三:EXTI中断输入实验——读取ARM按键状态
实验指导书及代码包下载: http://pan.baidu.com/s/1o6xToN4 iCore3 购买链接: https://item.taobao.com/item.htm?id=524229 ...
- pod 新格式
执行 $pod install 的时候,报一下错误: Analyzing dependencies [!] The dependency `MJExtension` is not used in an ...
- C#Web异步操作封装
using System; using System.Collections.Generic; using System.Web; namespace HttpAsync { /// <summ ...
- IOS移动设备处理器指令集 armv6、armv7、armv7s及arm64
Arm处理器,因为其低功耗和小尺寸而闻名,几乎所有的手机处理器都基于arm,其在嵌入式系统中的应用非常广泛,它的性能在同等功耗产品中也很出色. Armv6.armv7.armv7s.arm64都是ar ...
- fuelux.tree用法
ACE中带了一个树,样式和操作挺好看的,就是难用,下面记录下如何使用. 首先fuelux.tree接受的数据源是Json,关键这个Json还不怎么标准,可接受的Json示例如下: { '刑侦': { ...
- 《Linux内核设计与实现》CHAPTER1,2阅读梳理
<Linux内核设计与实现>CHAPTER1,2阅读梳理 [学习时间:2.5hours] [学习内容:Linux内核简介——历史与现今版本:Linux内核源代码以及编译] CHAPTER1 ...
- Convert and Cast for Date and Money format.
SELECT REPLACE(REPLACE(@str, CHAR(13), ''), CHAR(10), '') The below script removes the TAB(Horozonta ...