[问题2014A11]  解答

我们需要利用以下关于幂等阵判定的结论,它是复旦高代书第 142 页的例 3.6.4:

结论  设 \(A\) 为 \(n\) 阶方阵, 则 \(A^2=A\) 当且仅当 \(\mathrm{r}(A)+\mathrm{r}(I_n-A)=n\).

由题中两个条件和上述结论可得

\[n=\mathrm{r}(A+B)+\mathrm{r}(I_n-(A+B))=\mathrm{r}(A)+\mathrm{r}(B)+\mathrm{r}(I_n-A-B).\cdots(1)\]

证法一 (利用分块初等变换)

构造如下分块对角阵, 并对其实施分块初等变换, 可得

\[\begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & I_n-A-B \end{pmatrix}\to\begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ A & B & I_n-A-B \end{pmatrix}\to\begin{pmatrix} A & 0 & A \\ 0 & B & B \\ A & B & I_n \end{pmatrix}\]

\[\to\begin{pmatrix} A-A^2 & -AB & 0 \\ -BA & B-B^2 & 0 \\ A & B & I_n \end{pmatrix}\to\begin{pmatrix} A-A^2 & -AB & 0 \\ -BA & B-B^2 & 0 \\ 0 & 0 & I_n \end{pmatrix}.\]

注意到分块初等变换不改变矩阵的秩, 故由 (1) 式可得 \(\mathrm{r}\begin{pmatrix} A-A^2 & -AB \\ -BA & B-B^2 \end{pmatrix}=0\), 从而我们有 \(A^2=A\), \(B^2=B\), \(AB=BA=0\).

证法二 (由张钧瑞同学提供, 利用秩的不等式)

主要思路是反复利用秩的不等式 \(\mathrm{r}(A)+\mathrm{r}(B)\geq \mathrm{r}(A+B)\) (复旦高代书第 144 页习题 5(3)) 以及幂等阵判定的结论. 由 (1) 式可得

\[n\geq \mathrm{r}(A)+\mathrm{r}(I_n-A)\geq \mathrm{r}(I_n)=n,\]

所以上述不等式只能取等号, 从而 \(A\) 是幂等阵. 同理可证 \(B\) 也是幂等阵. 最后, 由 \((A+B)^2=A+B\), \(A^2=A\), \(B^2=B\) 可得 \(AB=BA=0\), 这是[问题2014A04] 的第一小题.  \(\Box\)

 本题的几何版本见复旦高代书第 208 页复习题 34, 所以本题也有第三种几何的证法, 具体证明请参考复旦高代白皮书 (第二版) 第 131 页例 4.45.

[问题2014A11] 解答的更多相关文章

  1. 精选30道Java笔试题解答

    转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...

  2. 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团

    精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...

  3. 【字符编码】Java字符编码详细解答及问题探讨

    一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...

  4. spring-stutrs求解答

    这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...

  5. JavaScript Bind()趣味解答 包懂~~

    首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...

  6. CMMI4级实践中的5个经典问题及解答

    这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是:   A.流程,子流程部分不明白 ...

  7. 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final

    1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...

  8. 知乎大牛的关于JS解答

    很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...

  9. [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

    [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...

随机推荐

  1. uploadify 报错集锦

    1.404 : 没有路由 检查 路由的大小写 或者 拼写 2.500: linux 没有读写权限

  2. 【转】NGUI研究院之为什么打开界面太慢(十三)

    NGUI打开界面太慢了,起初一直以为是unity的问题,最近经过我的全面测试我发现这和unity没有关系.一般一个比较复杂的界面大概需要150个GameObject  或者 UISprite .我用N ...

  3. jQuery DOM 与 原生DOM 互相转换的方法

    jQuery 转 js $('#element').get(0); // 等于 document.getElementById('element'); // 输出 <p id="ele ...

  4. Jfianl

    http://www.oschina.net/question/257183_149268----------- 添加Handler: me.add(new ContextPathHandler(&q ...

  5. 针对ajax执行后swiper特效无法执行解决方案

    ajax执行后重新绑定swiper事件.

  6. ArrayList 排序Sort()方法扩展

    1.sort() sort可以直接对默认继承 IComparable接口的类进行排序,如:int.string.... ArrayList arrayList = new ArrayList(); , ...

  7. (转载)SQL性能优化

    1.查询的模糊匹配尽量避免在一个复杂查询里面使用 LIKE '%parm1%'-- 红色标识位置的百分号会导致相关列的索引无法使用,最好不要用.解决办法:其实只需要对该脚本略做改进,查询速度便会提高近 ...

  8. Java基础之扩展GUI——显示About对话框(Sketcher 2 displaying an About dialog)

    控制台程序. 最简单的对话框仅仅显示一些信息.为了说明这一点,可以为Sketcher添加Help菜单项和About菜单项,之后再显示About对话框来提供有关应用程序的信息. 要新建的对话框类从JDi ...

  9. DNS消息格式

    一,简介 空谈误国,要让一大堆抽象的DNS概念落地,还是需要了解DNS消息格式的,本文会尽量详细地介绍DNS消息格式的每一个字段. 也可以移步rfc1035了解. 二,概览 DNS消息主要由五部分组成 ...

  10. Struts(八):动态方法调用

    动态方法调用:通过url动态调用action中的方法. 默认情况下,Struts的动态方法调用处于禁用状态. 测试定义一个action类: package com.dx.actions; public ...