[问题2014S04] 解答  由于 \(A\) 可对角化, 可设 \(\alpha_1,\alpha_2,\cdots,\alpha_n\in\mathbb{C}^n\) 是 \(A\) 的 \(n\) 个线性无关的特征向量, 即有\[A\alpha_i=\lambda_i\alpha_i,\,i=1,2,\cdots,n,\] 其中 \(\lambda_1,\lambda_2,\cdots,\lambda_n\) 是 \(A\) 的 \(n\) 个特征值.

构造 \(2n\) 维列向量如下: \[\beta_i=\begin{bmatrix}\alpha_i \\ \alpha_i \end{bmatrix},\,\beta_{n+i}=\begin{bmatrix}\alpha_i \\ -\alpha_i \end{bmatrix},\,i=1,2,\cdots,n. \] 容易验证 \(\beta_1,\cdots,\beta_n,\beta_{n+1},\cdots,\beta_{2n}\in\mathbb{C}^{2n}\) 是 \(2n\) 个线性无关的列向量.

注意到如下事实: \[B\beta_i=\begin{bmatrix} A & f(A) \\ f(A) & A \end{bmatrix}\begin{bmatrix}\alpha_i \\ \alpha_i \end{bmatrix}=(\lambda_i+f(\lambda_i))\begin{bmatrix}\alpha_i \\ \alpha_i \end{bmatrix}=(\lambda_i+f(\lambda_i))\beta_i,\] \[B\beta_{n+i}=\begin{bmatrix} A & f(A) \\ f(A) & A \end{bmatrix}\begin{bmatrix}\alpha_i \\ -\alpha_i \end{bmatrix}=(\lambda_i-f(\lambda_i))\begin{bmatrix}\alpha_i \\ -\alpha_i \end{bmatrix}=(\lambda_i-f(\lambda_i))\beta_{n+i},\] 即 \(\beta_1,\cdots,\beta_n,\beta_{n+1},\cdots,\beta_{2n}\) 是 \(B\) 的 \(2n\) 个线性无关的特征向量, 因此 \(B\) 可对角化.  \(\Box\)

[问题2014S04] 解答的更多相关文章

  1. 精选30道Java笔试题解答

    转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...

  2. 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团

    精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...

  3. 【字符编码】Java字符编码详细解答及问题探讨

    一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...

  4. spring-stutrs求解答

    这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...

  5. JavaScript Bind()趣味解答 包懂~~

    首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...

  6. CMMI4级实践中的5个经典问题及解答

    这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是:   A.流程,子流程部分不明白 ...

  7. 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final

    1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...

  8. 知乎大牛的关于JS解答

    很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...

  9. [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

    [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...

随机推荐

  1. cocos2d-x-3.1.1 创建项目

    cocos new 项目名  -p 包名 -l  语言 -d 路径 cmd 输入以下命令 cocos new HelloLua -p com.wcc.hellolua -l lua -d E:\coc ...

  2. python 语料处理(从文件夹中读取文件夹中文件,分词,去停用词,去单个字)

    # -*- coding:utf8 -*- import os import jieba def splitSentence(inputFile): fin = open(inputFile, 'r' ...

  3. 第七周PSP

    团队项目PSP 一:表格     C类型 C内容 S开始时间 E结束时间 I时间间隔 T净时间(mins) 预计花费时间(mins) 讨论 讨论用户界面 8:20 10:34 20 58 68 分析与 ...

  4. JS开发windows phone8.1系列之1

    http://msdn.microsoft.com/zh-cn/library/windows/apps/dn629638.aspx,要点: 1.了解项目结构:package.appxmanifest ...

  5. HTTP常见错误代码总结

    1.HTTP 401 用户验证失败.不允许继续访问 2.HTTP 403 禁止访问,访问web应用,没有指定要访问页面的名称 3.HTTP 404 请求的文件找不到,一般情况是在浏览器输入地址时,输入 ...

  6. mvc路由注意事项

    路由表中你增加的路由顺序是很重要的.我们自定义路由是增加在默认路由之前的. 假如你搞反了,那默认路由将永远替代调用自定义路由.

  7. Maintaining Your Signing Identities and Certificates 维护你的签名标识和证书

    Code signing your app lets users trust that your app has been created by a source known to Apple and ...

  8. Android动画的实现原理 .

    1.动画运行模式 独行模式 中断模式 2.Animation类 每个动画都重载了父类的applyTransformation方法这个方法的主要作用是把一些属性组装成一个Transformation类, ...

  9. sql 时间差

    select * from Tickets where ( case when UnloadTime is null then datediff(hh,LoadTime,getdate()) else ...

  10. Postgres Plus Advanced Server installation

    # setenforce Permissive # ./ppasmeta-9.3.1.3-linux-x64.run --mode text Installation Directory [/opt/ ...