这几天学校女生节,挺累的,感觉还是挺好玩的,前几天看了一下最短路,Bellman-fort算法果然比较厉害,今天又参考了刘汝佳的两本书,有了一点新的认识。

废话不说,先上代码:

#include <bits/stdc++.h>
using namespace std; const int INF = 0x3f3f3f3f;
const int maxn = ; struct Edge
{
int from,to;
int dist;
}; struct BellmanFord
{
int n,m;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
int d[maxn];
int p[maxn];
int cnt[maxn]; void init(int n)
{
this->n = n;
for(int i=; i<n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from,int to,int dist)
{
edges.push_back((Edge)
{
from,to,dist
});
m = edges.size();
G[from].push_back(m-);
} bool negativeCycle(int s)
{
queue<int> Q;
memset(inq,,sizeof(inq));
memset(cnt,,sizeof(cnt)); for(int i=; i<n; i++)
{
d[i] = INF;
} d[s] = ;
inq[s] = true;
Q.push(s); while(!Q.empty())
{
int u = Q.front();
Q.pop();
inq[u] = false;
for(int i=; i<G[u].size(); i++)
{
Edge& e = edges[G[u][i]];
if(d[u]<INF&&d[e.to]>d[u]+e.dist)
{
d[e.to] = d[u] + e.dist;
p[e.to] = G[u][i];
if(!inq[e.to])
{
Q.push(e.to);
inq[e.to] = true;
if(++cnt[e.to]>n)
return false;
}
}
}
}
return true;
} }; struct BellmanFord
{
int n,m;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
int d[maxn];
int p[maxn];
int cnt[maxn]; void init(int n)
{
this->n = n;
for(int i=; i<n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from,int to,int dist)
{
edges.push_back((Edge)
{
from,to,dist
});
m = edges.size();
G[from].push_back(m-);
} bool negativeCycle()
{
queue<int> Q;
memset(inq,,sizeof(inq));
memset(cnt,,sizeof(cnt));
for(int i=; i<n; i++)
{
d[i] = ;
inq[] = true;
Q.push(i);
} while(!Q.empty())
{
int u = Q.front();
Q.pop();
inq[u] = false;
for(int i=; i<G[u].size(); i++)
{
Edge& e = edges[G[u][i]];
if(d[e.to]>d[u]+e.dist)
{
d[e.to] = d[u] + e.dist;
p[e.to] = G[u][i];
if(!inq[e.to]) {
Q.push(e.to);
inq[e.to] = true;
if(++cnt[e.to]>n)
return true;
}
}
}
}
return false;
} };

第一个Bellman-Ford算法是紫书上的;

解析:

1、起点入队列

2、初始化点到起点的距离是INF;

3、和Dijkstra相比,每个结点可以多次加入(如果有负环,那么这个结点是可以多次松弛的,一旦次数无穷就说明了这的确是个负环);

4、因为是从起点出发的,然后在搜索邻接表,没有找到负环,只能说明,从起点到不了负环,但是可能是有负环的。没有负环,最短路数组 d 是正确可用的。

第二个Bellman-Ford算法是白书上的;

解析:

1、Bellman-Ford 算法一个重要应用就是判负环,上面的一个起点入队列,就要改成所有点入队列。

2、初始化 d 数组为 0:

  可以从第二图中,有一个负环,但是从 0 ,无法松弛;但是,在队列中,从 1 开始搜索的时候,还是可以松弛,并且找到这个负环;然后由于每个结点之前都入过队列,就能保证找到那个负环。

再谈Bellman-Ford的更多相关文章

  1. [转载]再谈百度:KPI、无人机,以及一个必须给父母看的案例

    [转载]再谈百度:KPI.无人机,以及一个必须给父母看的案例 发表于 2016-03-15   |   0 Comments   |   阅读次数 33 原文: 再谈百度:KPI.无人机,以及一个必须 ...

  2. Support Vector Machine (3) : 再谈泛化误差(Generalization Error)

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

  3. ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

    两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...

  4. Unity教程之再谈Unity中的优化技术

    这是从 Unity教程之再谈Unity中的优化技术 这篇文章里提取出来的一部分,这篇文章让我学到了挺多可能我应该知道却还没知道的知识,写的挺好的 优化几何体   这一步主要是为了针对性能瓶颈中的”顶点 ...

  5. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  6. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  7. 浅谈HTTP中Get与Post的区别/HTTP协议与HTML表单(再谈GET与POST的区别)

    HTTP协议与HTML表单(再谈GET与POST的区别) GET方式在request-line中传送数据:POST方式在request-line及request-body中均可以传送数据. http: ...

  8. Another Look at Events(再谈Events)

    转载:http://www.qtcn.org/bbs/simple/?t31383.html Another Look at Events(再谈Events) 最近在学习Qt事件处理的时候发现一篇很不 ...

  9. C++ Primer 学习笔记_32_STL实践与分析(6) --再谈string类型(下)

    STL实践与分析 --再谈string类型(下) 四.string类型的查找操作 string类型提供了6种查找函数,每种函数以不同形式的find命名.这些操作所有返回string::size_typ ...

  10. 再谈JSON -json定义及数据类型

    再谈json 近期在项目中使用到了highcharts ,highstock做了一些统计分析.使用jQuery ajax那就不得不使用json, 可是在使用过程中也出现了非常多的疑惑,比方说,什么情况 ...

随机推荐

  1. xshell连接本地虚拟机

    打开虚拟机输出命令ifconfig 然后使用xshell,连接这个地址即可 如果没有ip地址的话,这可以用“ifconfig eth0 ip地址 比如ifconfig eth0 192.3168.16 ...

  2. 设置Oracle时间格式

    ORACLE的DATE类型的显示方式取决于NLS_DATE_FORMAT初始化参数NLS_DATE_FORMAT参数可以在以下几个级别设置1.数据库级别——如果希望所有人都看到某种格式的数据,则在SQ ...

  3. WEB应用中的普通Java程序如何读取资源文件

    package cn.itcast; import java.io.IOException; import java.io.PrintWriter; import javax.servlet.Serv ...

  4. XHTML基础

    简介:前一章,我们知道网页主要是由内容.结构.表现和行为四个部分组成,而网页的结构由W3C规定的XHTML语言定义.本章介绍定义网页结构的XHTML基本标价.          1.XHTML基本语法 ...

  5. P1967 货车运输 -60分

    打了一个最大生成树+dfs,60分成功tle #include <bits/stdc++.h> using namespace std; const int maxn = 10005; c ...

  6. mysql重点--正确使用

    1.一些错误情况 数据库表中添加索引后确实会让查询速度起飞,但前提必须是正确的使用索引来查询,如果以错误的方式使用,则即使建立索引也会不奏效.即使建立索引,索引也不会生效: - like '%xx' ...

  7. 突然出现 -bash: pod: command not found 的解决方法

    $ mkdir -p $HOME/Software/ruby $ export GEM_HOME=$HOME/Software/ruby $ gem install cocoapods [...] g ...

  8. python的paramiko源码修改了一下,写了个操作命令的日志审计 bug修改

    python的paramiko源码修改了一下,写了个操作命令的日志审计,但是记录的日志中也将backspace删除键记录成^H这个了,于是改了一下代码,用字符串的特性. 字符串具有列表的特性 > ...

  9. windows7打印时,显示脱机,提示“服务器打印后台处理程序服务没有运行”。

    1. 问题 windows7打印时,显示脱机,提示“服务器打印后台处理程序服务没有运行”. 2. 解决方法. 将下面的文字保存为bat文件执行,其中\\192.168.40.110\Lenovo M7 ...

  10. LUA OOP编程实现方法

    lua原生不支持OOP特性 确实如此, 同时可以采用其它lua代码的方式实现OOP的特性. OOP四大特性 抽象 封装 继承 多态 http://www.cnblogs.com/xiaosongluf ...