http://www.lydsy.com/JudgeOnline/problem.php?id=2038 (题目链接)

转自:http://blog.csdn.net/bossup/article/details/39236275

题意

  给出n个数以及m个区间,求在每个区间内选出两个数,有多大的概率使选出的两个数相等。

solution

  对于${L,R}$的询问。设其中颜色为${x,y,z….}$的袜子的个数为${a,b,c….}$那么答案即为$${\frac{a*\frac{a-1}{2}+b*\frac{b-1}{2}+c*\frac{c-1}{2}….}{\frac{(R-L+1)(R-L)}{2}}}$$

  化简得:$${\frac{a^2+b^2+c^2+…x^2-(a+b+c+d+…..)}{(R-L+1)(R-L)}}$$
  即:$${\frac{a^2+b^2+c^2+…x^2-(R-L+1)}{(R-L+1)(R-L)}}$$

  所以这道题目的关键是求一个区间内每种颜色数目的平方和。

  但问题时怎么快速求解呢?

  对于一般区间维护类问题一般想到用线段树。但是这题完全不知道线段树怎么做,所以只能用莫队算法了。

  莫队算法是离线处理一类区间不修改查询类问题的算法。就是如果你知道了${[L,R]}$的答案。你可以在${O(1)}$的时间下得到${[L,R-1]}$和${[L,R+1]}$和${[L-1,R]}$和${[L+1,R]}$的答案的话。就可以使用莫队算法。

  对于莫队算法其实就是暴力。只是预先知道了所有的询问。可以合理的组织计算每个询问的顺序以此来降低复杂度。要知道我们算完${[L,R]}$的答案后现在要算${[L’,R’]}$的答案。由于可以在${O(1)}$的时间下得到${[L,R-1]}$和${[L,R+1]}$和${[L-1,R]}$和${[L+1,R]}$的答案。所以计算${[L’,R’]}$的答案花的时间为${|L-L’|+|R-R’|}$。如果把询问${[L,R]}$看做平面上的点${a(L,R)}$;询问${[L’,R’]}$看做点${b(L’,R’)}$的话。那么时间开销就为两点的曼哈顿距离。所以对于每个询问看做一个点。我们要按一定顺序计算每个值。那开销就为曼哈顿距离的和。要计算到每个点。那么路径至少是一棵树。所以问题就变成了求二维平面的最小曼哈顿距离生成树。

  关于二维平面最小曼哈顿距离生成树。感兴趣的可以参考【poj3241】 Object Clustering

  这样只要顺着树边计算一次就ok了。可以证明时间复杂度为${n*\sqrt{n}}$这个我不会证明。

  但是这种方法编程复杂度稍微高了一点。所以有一个比较优雅的替代品。那就是先对序列分块。然后对于所有询问按照${L}$所在块的大小排序。如果一样再按照${R}$排序。然后按照排序后的顺序计算。为什么这样计算就可以降低复杂度呢。

  一、${i}$与${i+1}$在同一块内,${r}$单调递增,所以${r}$是${O(n)}$的。由于有${\sqrt{n}}$块,所以这一部分时间复杂度是${n^{1.5}}$。

  二、${i}$与${i+1}$跨越一块,${r}$最多变化${n}$,由于有${\sqrt{n}}$块,所以这一部分时间复杂度是${n^{1.5}}$。

  三、${i}$与${i+1}$在同一块内时${l}$变化不超过${\sqrt{n}}$,跨越一块也不会超过${2*\sqrt{n}}$,不妨看作是${\sqrt{n}}$。由于有${n}$个数,所以时间复杂度是${n^{1.5}}$。

  所以复杂度就变成${O(n*\sqrt{n})}$。

代码

// bzoj2038
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#define MOD 1000000007
#define inf 2147483640
#define LL long long
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std;
inline LL getint() {
LL x=0,f=1;char ch=getchar();
while (ch>'9' || ch<'0') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int maxn=50010;
struct data {LL a,b;int l,r,id;}t[maxn];
int n,m,pos[maxn],a[maxn];
LL s[maxn],ans; bool cmp1(data a,data b) {
return pos[a.l]==pos[b.l]?a.r<b.r:pos[a.l]<pos[b.l];
}
bool cmp2(data a,data b) {
return a.id<b.id;
}
void update(int p,int val) {
ans-=s[a[p]]*s[a[p]];
s[a[p]]+=val;
ans+=s[a[p]]*s[a[p]];
}
LL gcd(LL x,LL y) {
return x%y==0?y:gcd(y,x%y);
}
int main() {
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
int block=int(sqrt(n));
for (int i=1;i<=n;i++) pos[i]=(i-1)/block+1;
for (int i=1;i<=m;i++) {
scanf("%d%d",&t[i].l,&t[i].r);
t[i].id=i;
}
sort(t+1,t+1+m,cmp1);
for (int i=1,l=1,r=0;i<=m;i++) {
for (;r<t[i].r;r++) update(r+1,1);
for (;r>t[i].r;r--) update(r,-1);
for (;l<t[i].l;l++) update(l,-1);
for (;l>t[i].l;l--) update(l-1,1);
if (t[i].l==t[i].r) {t[i].a=0,t[i].b=1;continue;}
t[i].a=ans-(t[i].r-t[i].l+1);
t[i].b=(LL)(t[i].r-t[i].l+1)*(t[i].r-t[i].l);
LL k=gcd(t[i].a,t[i].b);
t[i].a/=k;t[i].b/=k;
}
sort(t+1,t+1+m,cmp2);
for (int i=1;i<=m;i++) printf("%lld/%lld\n",t[i].a,t[i].b);
return 0;
}

  

【bzoj2038】 小Z的袜子(hose)的更多相关文章

  1. BZOJ2038小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2343  Solved: 1077[Subm ...

  2. Bzoj2038 小Z的袜子(hose)

    Time Limit: 20000MS   Memory Limit: 265216KB   64bit IO Format: %lld & %llu Description 作为一个生活散漫 ...

  3. bzoj2038 小Z的袜子(hose)——莫队算法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2038 就是莫队算法: 先写了个分块,惨WA: #include<iostream> ...

  4. BZOJ2038 2009国家集训队 小Z的袜子(hose) 【莫队】

    BZOJ2038 2009国家集训队 小Z的袜子(hose) Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼 ...

  5. [bzoj2038][2009国家集训队]小Z的袜子(hose)_莫队

    小Z的袜子 hose 2009-国家集训队 bzoj-2038 题目大意:给定一个n个袜子的序列,每个袜子有一个颜色.m次询问:每次询问一段区间中每种颜色袜子个数的平方和. 注释:$1\le n,m\ ...

  6. 【bzoj2038】[2009国家集训队]小Z的袜子(hose)(细致总结)

    [bzoj2038][2009国家集训队]小Z的袜子(hose)(细致总结) Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z ...

  7. BZOJ-2038 小Z的袜子(hose) 莫队算法

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MB Submit: 5573 Solved: 2568 [Subm ...

  8. BZOJ2038: [2009国家集训队]小Z的袜子(hose) -- 莫队算法 ,,分块

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 3577  Solved: 1652[Subm ...

  9. [BZOJ2038] [2009国家集训队]小Z的袜子(hose) 莫队算法练习

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 10299  Solved: 4685[Sub ...

  10. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)&&莫对算法

    这里跟曼哈顿最小生成树没有太大的关系. 时间复杂度证明: [BZOJ2038 小Z的袜子 AC代码] 排序方式: 第一关键字:l所在的块: 第二关键字:r从小到大. #include<cstdi ...

随机推荐

  1. Yeo 17-ROI parcellation

    Reference Buckner R L, Krienen F M, Castellanos A, et al. The organization of the human cerebellum e ...

  2. 数据字典生成工具之旅(6):NVelocity语法介绍及实例

    本章开始将会为大家讲解NVelocity的用法,并带领大家实现一个简单的代码生成器. NVelocity是一个基于.NET的模板引擎(template engine).它允许任何人仅仅简单的使用模板语 ...

  3. CUDA2.3-原理之任意长度的矢量求和与用事件来测量性能

    __global__ void add( int *a, int *b, int *c) { <span style="white-space:pre"> </s ...

  4. 闲扯 『 document.write 』

    初春的晚上,闲来无事,聊聊 document.write 方法. document.write 使用方式非常简单,把 "字符串化"(不好意思,这可能是我自己创造的名词)的 html ...

  5. 从零开始打造个人专属命令行工具集——yargs完全指南

    前言 使用命令行程序对程序员来说很常见,就算是前端工程师或者开发gui的,也需要使用命令行来编译程序或者打包程序 熟练使用命令行工具能极大的提高开发效率,linux自带的命令行工具都非常的有用,但是这 ...

  6. 使用pngquant来压缩png资源缩小apk

    最近发现了一个叫做pngquant的工具,可以有效的压缩资源文件中的png文件,从而减小发布的apk的大小.我发现这个工具有两个特点: 1. 真无损,压缩后重新运行了我的app发现是没有任何区别的 2 ...

  7. Nodejs进阶:如何将图片转成datauri嵌入到网页中去

    问题:将图片转成datauri 今天,在QQ群有个群友问了个问题:"nodejs读取图片,转成base64,怎么读取呢?" 想了一下,他想问的应该是 怎么样把图片嵌入到网页中去,即 ...

  8. 从零开始搭建架构实施Android项目

    我们先假设一个场景需求:刚有孩子的爸爸妈妈对用照片.视频记录宝宝成长有强烈的意愿,但苦于目前没有一款专门的手机APP做这件事.A公司洞察到市场需求,要求开发团队尽快完成Android客户端的开发.以下 ...

  9. linux命令行安装使用KVM

    一.说明 本篇文章介绍的是基于centos环境来安装的,ip地址192.168.4.233 二.检查CPU是否支持虚拟技术 egrep 'vmx|svm' /proc/cpuinfo 如果有输出内容表 ...

  10. HTTP请求头参数

      Accept-Language: zh-cn,zh;q=0.5 意思:浏览器支持的语言分别是中文和简体中文,优先支持简体中文. 详解: Accept-Language表示浏览器所支持的语言类型: ...