Deep Metric Learning via Lifted Structured Feature Embedding

CVPR 2016

  摘要:本文提出一种距离度量的方法,充分的发挥 training batches 的优势,by lifting the vector of pairwise distances within the batch to the matrix of pairwise distances. 刚开始看这个摘要,有点懵逼,不怕,后面会知道这段英文是啥意思的。

  

  引言部分开头讲了距离相似性度量的重要性,并且应用广泛。这里提到了三元组损失函数 (triplet loss),就是讲在训练的过程当中,尽可能的拉近两个相同物体之间的距离,而拉远不同物体之间的距离;这种做法会比普通的训练方法得到更好的效果。但是,文章中提到,现有的三元组方法却无法充分利用 minibatch SGD training 的 training batches 的优势。现有的方法首先随机的采样图像对或者三元组,构建训练 batches, 计算每一个 pairs or triplets 的损失。本文提出一种方法,称为:lifts,将 the vector of pairwise distances 转换成 the matrix of pairwise distance. 然后在 lifts problem 上设计了一个新的结构损失目标。结果表明,在 GoogleLeNet network 上取得了比其他方法都要好的结果。

  然后作者简单的回顾了一下关于判别性训练网络(discriminatively training networks)来学习 semantic embedding。大致结构预览图如下所示:

  首先是: Contrastive embedding. 

  这种方法在 paired data ${(x_i, x_j, y_{ij})}$上进行训练。这种 contrastive training 最小化具有相同 label 类别的样本之间的距离,然后对不同label的样本,但是其距离小于 $\alpha$ 的 negative pair 给予惩罚。代价函数的定义为:

  其中,m 代表batch中图像的个数,f(*)是网路输出的特征,即原文中表达的:the feature embedding output from the network. $D_{i, j}$ 是两个样本特征之间欧式距离的度量。标签 $y_{i, j} \in {0, 1}$表明是否样本对来自同一个类别。$[*]_+$ 操作是 the hinge function max(0, *)。

  第二个是:Triplet embedding

  这个就是著名的三元组损失函数了,即:找一个 anchor,然后找一个正样本,一个负样本。训练的目的就是:鼓励网络找到一个 embedding 使得 xa and xn 之间的距离大于 xa and xp 加上一个 margin $\alpha$ 的和。损失函数定义为:

  其中,D仍然表示样本之间特征的距离。

  然后就是本文提出的一种度量方法了:

  Deep metric learning via lifted structured feature embedding.

   我们基于训练集合的正负样本,定义了一个结构化的损失函数:  

  其中,P 是正样本的集合,N 是负样本的集合。这个函数提出了两个计算上的挑战:

  1. 非平滑(non-smooth)

  2. 评价和计算其子梯度需要最小化所有样本对若干次。

  我们以两种方式解决了上述挑战:

  首先,我们优化上述函数的一个平滑上界;

  第二,对于大数据常用的方法类似,我们采用随机的方法。

  然而,前人的工作都是用SGD的方法,随机的均匀的选择 pairs or triplets。我们的方法从这之中得到了借鉴:

    (1). it biases the sample towards including "difficult" pairs, just like a subgradient of $J_{i,j}$ would use the close negative pairs;

  (2). 一次采样就充分的利用了一个 mini-batch的全部信息,而不仅仅是两个pair之间的信息。

  为了充分的利用这个 batch,一个关键的 idea 是增强 mini-batch 的优化以利用所有的pairs。

  需要注意的是:随机采样的样本对之间的 negative edges 携带了非常有限的信息。

  

  所以,我们的方法改为并非完全随机,而是引入了重要性采样的元素。我们随机的采样了一些 positive pairs,然后添加了一些他们的 difficult neighbors 来训练 mini-batch. 这个增强增加了子梯度会用到的相关信息。下图展示了一个 positive pair 在一个 batch 中的搜索过程,即:在一个 positive pair 的图像中,我们找到其 close(hard)negative images。  

  注意到我们的方法可以从两端开始搜索,而三元组则仅仅只能和定义好的结构上的元素进行搜索。

  

   此外,搜索 single hardest negative with nested max function 实际上会导致网络收敛到一个 bad local optimum. 所以我们采用了如下的 smooth upper bound,所以 我们的损失函数定义为:  

  其中,P是batch中 positive pairs 集合,N 是negative pairs 的集合。后向传播梯度可以如算法1所示的那样,对应距离的梯度为:

  

    其中的 1[*] 是指示函数,如果括号内的判断为真,那么输出为1,否则就是0.

  本文的算法流程图,如下所示:

  


  结果展示:

  


    文章总结

  可以看出,本文是在三元组损失函数基础上的一个改进。并非仅仅考虑预先定义好的样本之间的差异性,而是考虑到一个 batches 内部 所有的样本之间的差异。在这个过程中,文章中引入了类似 hard negative mining 的思想,考虑到正负样本之间的难易程度。并且为了避免网络的训练陷入到 局部最优的bug中去,引入了损失函数的上界来缓解这个问题。

  一个看似不大的改动,却可以发到CVPR,也从某个角度说明了这个方法的价值。

  难道,三元组损失函数就这样被这个算法击败了? 自己当初看到三元组损失函数的时候,为什么就没有忘这个方向去思考呢???

  还有一个疑问是:为什么这种方法的操作,称为:lifted structured feature embedding ?

  难道说,是因为这个左右移动的搜索 hard negative samples 的过程类似于电梯(lift)?那 feature embedding 怎么理解呢? embedding 是映射,难道是:特征映射么??

  

论文笔记之: Deep Metric Learning via Lifted Structured Feature Embedding的更多相关文章

  1. 论文笔记:Deep Residual Learning

    之前提到,深度神经网络在训练中容易遇到梯度消失/爆炸的问题,这个问题产生的根源详见之前的读书笔记.在 Batch Normalization 中,我们将输入数据由激活函数的收敛区调整到梯度较大的区域, ...

  2. 读论文系列:Deep transfer learning person re-identification

    读论文系列:Deep transfer learning person re-identification arxiv 2016 by Mengyue Geng, Yaowei Wang, Tao X ...

  3. 论文笔记——A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding

    论文<A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding> Prunin ...

  4. 【论文阅读】Deep Mutual Learning

    文章:Deep Mutual Learning 出自CVPR2017(18年最佳学生论文) 文章链接:https://arxiv.org/abs/1706.00384 代码链接:https://git ...

  5. 论文解读《Deep Resdual Learning for Image Recognition》

    总的来说这篇论文提出了ResNet架构,让训练非常深的神经网络(NN)成为了可能. 什么是残差? "残差在数理统计中是指实际观察值与估计值(拟合值)之间的差."如果回归模型正确的话 ...

  6. Person Re-identification 系列论文笔记(二):A Discriminatively Learned CNN Embedding for Person Re-identification

    A Discriminatively Learned CNN Embedding for Person Re-identification Zheng Z, Zheng L, Yang Y. A Di ...

  7. 论文笔记:Deep feature learning with relative distance comparison for person re-identification

    这篇论文是要解决 person re-identification 的问题.所谓 person re-identification,指的是在不同的场景下识别同一个人(如下图所示).这里的难点是,由于不 ...

  8. 论文笔记:Deep Attentive Tracking via Reciprocative Learning

    Deep Attentive Tracking via Reciprocative Learning NIPS18_tracking Type:Tracking-By-Detection 本篇论文地主 ...

  9. 论文笔记 — L2-Net: Deep Learning of Discriminative Patch Descriptor in Euclidean Space

    论文: 本文主要贡献: 1.提出了一种新的采样策略,使网络在少数的epoch迭代中,接触百万量级的训练样本: 2.基于局部图像块匹配问题,强调度量描述子的相对距离: 3.在中间特征图上加入额外的监督: ...

随机推荐

  1. table插件实现

    选择.取消.全选.全部取消.获取行ids /** * Created by lizongqiong on 2016/1/8. */ var $ = require('jquery'); var tab ...

  2. java 滤镜实现

    一句话,滤镜的实现就是对像素点(RGBA)进行再运算,输出新的像素点.    F(r,g,b,a)=G(r,g,b,a); 这个公式包含四个变换,即RGB颜色空间中RGB三个分量的变换以及透明度Alh ...

  3. javascript的一些基础

    当复制的两个变量的地址不同时他们是不相等的如下代码所示 function getFunction(value){ return function(value){ return value; } } v ...

  4. Number plate recognition with Tensorflow

    2015年5月  在此处  http://matthewearl.github.io/2016/05/06/cnn-anpr/#rd 寻觅出 使用TenserFlow的车牌号识别 技术. 感觉很有必要 ...

  5. uva 211(dfs)

    211 - The Domino Effect Time limit: 3.000 seconds A standard set of Double Six dominoes contains 28 ...

  6. git中Member设置为Developer也可以的

    之前说Member至少要设置为master,或者owner才行,昨天发现依然可以设置为developer. 因为有个位置可以设置Developers can push,√上就可以了. 比如,我不希望大 ...

  7. w3school一个学习编程的好地方!

    http://www.w3school.com.cn/index.html 每天过来学习几篇.

  8. LazyLoad使用注意

    今天使用ProgressHUD,进行网络请求后显示加载完成提示框,但是无效,检查以后发现数据源数组使用了懒加载,在调用数组之前调用ProgressHUD里的方法,根本无效啊!以后用懒加载注意.

  9. [HB2014 Week5] Allot 人员分配

    这两天决心专门搞好网络流了 - - 题解在什么瞎胡搞跟我说要连n+2和n+1容量为无穷的边…我看了下std才做的… 坑死人的地方就是,需要求多次网络流,每次别忘了把流给清空了…这次是用链表所以专门写了 ...

  10. [CQOI 2014] 数三角形 & 机械排序臂

    数三角形 bzoj 3505 要知道一个公式就是(a,b)和(x,y)两点所成线段上面的整点数是gcd(a-x,b-y)-1,通过枚举原点到map上任意一点所能成的三角形,再平移,得到要去掉的三点共线 ...