Openfire集群源码分析
如果用户量增加后为了解决吞吐量问题,需要引入集群,在openfire中提供了集群的支持,另外也实现了两个集群插件:hazelcast和clustering。为了了解情况集群的工作原理,我就沿着openfire的源代码进行了分析,也是一次学习的过程。
数据库因为对于openfire来说基本上是透明的,所以这块就交给数据库本身来实现。缓存数据缓存是存在内存里的,所以这部分是要同步的sessionsession在openfire并不需要所有实例同步,但是需要做用户路由缓存,否则发消息时找不到对应的会话。由此用户路由还是要同步的。
- 缓存接口
public interface Cache<K,V> extends java.util.Map<K,V>
如果不开启集群时缓存的默认缓存容器类是:public class DefaultCache<K, V> ,实际上DefaultCache就是用一个Hashmap来存数据的。
- 缓存工厂类
public class CacheFactory
/**
* Returns the named cache, creating it as necessary.
*
* @param name the name of the cache to create.
* @return the named cache, creating it as necessary.
*/
@SuppressWarnings("unchecked")
public static synchronized <T extends Cache> T createCache(String name) {
T cache = (T) caches.get(name);
if (cache != null) {
return cache;
}
cache = (T) cacheFactoryStrategy.createCache(name); log.info("Created cache [" + cacheFactoryStrategy.getClass().getName() + "] for " + name); return wrapCache(cache, name);
}
上面代码中会通过缓存工厂策略对象来创建一个缓存容器,最后warpCache方法会将此容器放入到caches中。
- 缓存工厂类的策略
- startup
public static synchronized void startup() {
if (isClusteringEnabled() && !isClusteringStarted()) {
initEventDispatcher();
CacheFactory.startClustering();
}
}
- 会使用集群的缓存工厂策略来启动,同时使自己加入到集群中。
- 开启一个线程用于同步缓存的状态
- shutdown
public static void doClusterTask(final ClusterTask<?> task) {
cacheFactoryStrategy.doClusterTask(task);
}
这里有个限定就是必须是ClusterTask派生的类才行,看看它的定义:
public interface ClusterTask<V> extends Runnable, Externalizable {
V getResult();
}
主要是为了异步执行和序列化,异步是因为不能阻塞,而序列化当然就是为了能在集群中传送。
- 缓存策略工厂类(ClusteredCacheFactory)
public class ClusteredCacheFactory implements CacheFactoryStrategy {
首先是startCluster方法用于启动集群,主要完成几件事情:
- 设置缓存序列化工具类,ClusterExternalizableUtil。这个是用于集群间数据复制时的序列化工具
- 设置远程session定位器,RemoteSessionLocator,因为session不同步,所以它主要是用于多实例间的session读取
- 设置远程包路由器ClusterPacketRouter,这样就可以在集群中发送消息了
- 加载Hazelcast的实例设置NodeID,以及设置ClusterListener
/**
* Notification message indicating that this JVM has joined a cluster.
*/
@SuppressWarnings("unchecked")
public static synchronized void joinedCluster() {
cacheFactoryStrategy = clusteredCacheFactoryStrategy;
// Loop through local caches and switch them to clustered cache (copy content)
for (Cache cache : getAllCaches()) {
// skip local-only caches
if (localOnly.contains(cache.getName())) continue;
CacheWrapper cacheWrapper = ((CacheWrapper) cache);
Cache clusteredCache = cacheFactoryStrategy.createCache(cacheWrapper.getName());
clusteredCache.putAll(cache);
cacheWrapper.setWrappedCache(clusteredCache);
}
clusteringStarting = false;
clusteringStarted = true;
log.info("Clustering started; cache migration complete");
}
这里可以看到会读取所有的缓存容器并一个个的使用Wrapper包装一下,然后用同样的缓存名称去createCache一个新的Cache,这步使用的是切换后的集群缓存策略工厂,也就是说会使用ClusteredCacheFactory去创建新的缓存容器。最后再将cache写入到新的clusteredCache 里,这样就完成了缓存的切换。
public Cache createCache(String name) {
// Check if cluster is being started up
while (state == State.starting) {
// Wait until cluster is fully started (or failed)
try {
Thread.sleep(250);
}
catch (InterruptedException e) {
// Ignore
}
}
if (state == State.stopped) {
throw new IllegalStateException("Cannot create clustered cache when not in a cluster");
}
return new ClusteredCache(name, hazelcast.getMap(name));
}
这里使用的是ClusteredCache,而且最重要的是传入的第二个map参数换成了hazelcast的了,这样之后再访问这个缓存容器时已经不再是原先的本地Cache了,已经是hazelcast的map对象。hazelcast会自动对map的数据进行同步管理,这也就完成了缓存同步的功能。
- 集群计算
那就看hazelcast的实现吧,在ClusteredCacheFactory中doClusterTask举个例子吧:
public void doClusterTask(final ClusterTask task) {
if (cluster == null) { return; }
Set<Member> members = new HashSet<Member>();
Member current = cluster.getLocalMember();
for(Member member : cluster.getMembers()) {
if (!member.getUuid().equals(current.getUuid())) {
members.add(member);
}
}
if (members.size() > 0) {
// Asynchronously execute the task on the other cluster members
logger.debug("Executing asynchronous MultiTask: " + task.getClass().getName());
hazelcast.getExecutorService(HAZELCAST_EXECUTOR_SERVICE_NAME).submitToMembers(
new CallableTask<Object>(task), members);
} else {
logger.warn("No cluster members selected for cluster task " + task.getClass().getName());
}
}
过程就是,先获取到集群中的实例成员,当然要排除自己。然后hazelcast提供了ExecutorService来执行这个task,方法就是submiteToMembers。这样就提交了一个运算任务。只不过具体是如何分配计算并汇集结果倒真不太清楚。
总结
Openfire集群源码分析的更多相关文章
- ZK集群源码解读
1.1. 集群模式 1.1.1. 数据同步总流程 1.1.1.1. OBSERVING 1.1.1.2. FOLLOWING 1.1.1.3. LEADING 1.1.2. 领导选举 1.1.2. ...
- WordCount 远程集群源码
package test; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop ...
- quartz集群调度机制调研及源码分析---转载
quartz2.2.1集群调度机制调研及源码分析引言quartz集群架构调度器实例化调度过程触发器的获取触发trigger:Job执行过程:总结:附: 引言 quratz是目前最为成熟,使用最广泛的j ...
- (1)quartz集群调度机制调研及源码分析---转载
quartz2.2.1集群调度机制调研及源码分析 原文地址:http://demo.netfoucs.com/gklifg/article/details/27090179 引言quartz集群架构调 ...
- [转]RMI方式Ehcache集群的源码分析
RMI方式Ehcache集群的源码分析 Ehcache不仅支持基本的内存缓存,还支持多种方式将本地内存中的缓存同步到其他使用Ehcache的服务器中,形成集群.如下图所示: Ehcache支持 ...
- RMI方式Ehcache集群的源码分析
Ehcache不仅支持基本的内存缓存,还支持多种方式将本地内存中的缓存同步到其他使用Ehcache的服务器中,形成集群.如下图所示: Ehcache支持多种集群方式,下面以RMI通信方式为例,来具体分 ...
- 分布式缓存技术之Redis_Redis集群连接及底层源码分析
目录 1. Jedis 单点连接 2. Jedis 基于sentinel连接 基本使用 源码分析 本次源码分析基于: jedis-3.0.1 1. Jedis 单点连接 当是单点服务时,Java ...
- Dubbo 源码分析 - 集群容错之 LoadBalance
1.简介 LoadBalance 中文意思为负载均衡,它的职责是将网络请求,或者其他形式的负载"均摊"到不同的机器上.避免集群中部分服务器压力过大,而另一些服务器比较空闲的情况.通 ...
- Dubbo 源码分析 - 集群容错之 Cluster
1.简介 为了避免单点故障,现在的应用至少会部署在两台服务器上.对于一些负载比较高的服务,会部署更多台服务器.这样,同一环境下的服务提供者数量会大于1.对于服务消费者来说,同一环境下出现了多个服务提供 ...
随机推荐
- UE4新手之编程指南
虚幻引擎4为程序员提供了两套工具集,可共同使用来加速开发的工作流程. 新的游戏类.Slate和Canvas用户接口元素以及编辑器功能可以使用C++语言来编写,并且在使用Visual Studio 或 ...
- 使用 .NET WinForm 开发所见即所得的 IDE 开发环境,实现不写代码直接生成应用程序
直接切入正题,这是我09年到11年左右业余时间编写的项目,最初的想法很简单,做一个能拖拖拽拽就直接生成应用程序的工具,不用写代码,把能想到的业务操作全部封装起来,通过配置的方式把这些业务操作组织起来运 ...
- JavaScript权威指南 - 数组
JavaScript数组是一种特殊类型的对象. JavaScript数组元素可以为任意类型,最大容纳232-1个元素. JavaScript数组是动态的,有新元素添加时,自动更新length属性. J ...
- ASP.NET MVC5+EF6+EasyUI 后台管理系统(65)-MVC WebApi 用户验证 (1)
系列目录 前言: WebAPI主要开放数据给手机APP,其他需要得知数据的系统,或者软件应用,所以移动端与系统的数据源往往是相通的. Web 用户的身份验证,及页面操作权限验证是B/S系统的基础功能, ...
- nginx+iis+redis+Task.MainForm构建分布式架构 之 (redis存储分布式共享的session及共享session运作流程)
本次要分享的是利用windows+nginx+iis+redis+Task.MainForm组建分布式架构,上一篇分享文章制作是在windows上使用的nginx,一般正式发布的时候是在linux来配 ...
- Mysql存储引擎及选择方法
0x00 Mysql数据库常用存储引擎 Mysql数据库是一款开源的数据库,支持多种存储引擎的选择,比如目前最常用的存储引擎有:MyISAM,InnoDB,Memory等. MyISAM存储引擎 My ...
- golang语言构造函数
1.构造函数定义 构造函数 ,是一种特殊的方法.主要用来在创建对象时初始化对象, 即为对象成员变量赋初始值,总与new运算符一起使用在创建对象的语句中.特别的一个类可以有多个构造函数 ,可根据其参数个 ...
- FILE文件流的中fopen、fread、fseek、fclose的使用
FILE文件流用于对文件的快速操作,主要的操作函数有fopen.fseek.fread.fclose,在对文件结构比较清楚时使用这几个函数会比较快捷的得到文件中具体位置的数据,提取对我们有用的信息,满 ...
- docker4dotnet #3 在macOS上使用Visual Studio Code和Docker开发asp.net core和mysql应用
.net猿遇到了小鲸鱼,觉得越来越兴奋.本来.net猿只是在透过家里那田子窗看外面的世界,但是看着海峡对岸的苹果园越来越茂盛,实在不想再去做一只宅猿了.于是,.net猿决定搭上小鲸鱼的渡轮到苹果园去看 ...
- Linux设备管理(五)_写自己的sysfs接口
我们在Linux设备管理(一)_kobject, kset,ktype分析一文中介绍了kobject的相关知识,在Linux设备管理(二)_从cdev_add说起和Linux设备管理(三)_总线设备的 ...