PDF下载链接

PMF

If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$, we write $X \sim B(n, p)$. The probability of getting exactly $x$ successes in $n$ trials is given by the probability mass function: $$f(x; n, p) = \Pr(X=x) = {n\choose x}p^{x}(1-p)^{n-x}$$ for $x=0, 1, 2, \cdots$ and ${n\choose x} = {n!\over(n-x)!x!}$.

Proof:

$$ \begin{align*} \sum_{x=0}^{\infty}f(x; n, p) &= \sum_{x=0}^{\infty}{n\choose x}p^{x}(1-p)^{n-x}\\ &= [p + (1-p)]^{n}\;\;\quad\quad \mbox{(binomial theorem)}\\ &= 1 \end{align*} $$

Mean

The expected value is $$\mu = E[X] = np$$

Proof:

$$ \begin{align*} E\left[X^k\right] &= \sum_{x=0}^{\infty}x^{k}{n\choose x}p^{x}(1-p)^{n-x}\\ &= \sum_{x=1}^{\infty}x^{k}{n\choose x}p^{x}(1-p)^{n-x}\\ &= np\sum_{x=1}^{\infty}x^{k-1}{n-1\choose x-1}p^{x-1}(1-p)^{n-x}\quad\quad\quad (\mbox{identity}\ x{n\choose x} = n{n-1\choose x-1})\\ &= np\sum_{y=0}^{\infty}(y+1)^{k-1}{n-1\choose y}p^{y}(1-p)^{n-1-y}\quad(\mbox{substituting}\ y=x-1)\\ &= npE\left[(Y + 1)^{k-1}\right] \quad\quad\quad \quad\quad\quad \quad\quad\quad\quad\quad (Y\sim B(n-1, p)) \\ \end{align*} $$ Using the identity $$ \begin{align*} x{n\choose x} &= {x\cdot n!\over(n-x)!x!}\\ & = {n!\over(n-x)!(x-1)!}\\ &= n{(n-1)!\over[(n-1)-(x-1)]!(x-1)!}\\ &= n{n-1\choose x-1} \end{align*} $$ Hence setting $k=1$ we have $$E[X] = np$$

Variance

The variance is $$\sigma^2 = \mbox{Var}(X) = np(1-p)$$

Proof:

$$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= npE[Y+1] - n^2p^2\\ & = np\left(E[Y] + 1\right) - n^2p^2\\ & = np[(n-1)p + 1] - n^2p^2\quad\quad (Y\sim B(n-1, p))\\ &= np(1-p) \end{align*} $$

Examples

1. Let $X$ be binomially distributed with parameters $n=10$ and $p={1\over2}$. Determine the expected value $\mu$, the standard deviation $\sigma$, and the probability $P\left(|X-\mu| \geq 2\sigma\right)$. Compare with Chebyshev's Inequality.

Solution:

The binomial mass function is $$f(x) ={n\choose x} p^x \cdot q^{n-x},\ x=0, 1, 2, \cdots$$ where $q=1-p$. The expected value and the standard deviation are $$E[X] = np=5,\ \sigma = \sqrt{npq} = 1.581139$$ The probability that $X$ takes a value more than two standard deviations from $\mu$ is $$ \begin{align*} P\left(|X-\mu| \geq 2\sigma\right) &= P\left(|X-5| \geq 3.2\right)\\ &= P(X\leq 1) + P(X \geq9)\\ &= \sum_{x=0}^{1}{10\choose x}p^{x}(1-p)^{10-x} + \sum_{x=9}^{\infty}{10\choose x}p^{x}(1-p)^{10-x}\\ & = 0.02148437 \end{align*} $$ R code:

sum(dbinom(c(0, 1), 10, 0.5)) + 1 - sum(dbinom(c(0:8), 10, 0.5))
# [1] 0.02148437
pbinom(1, 10, 0.5) + 1 - pbinom(8, 10, 0.5)
# [1] 0.02148438

Chebyshev's Inequality gives the weaker estimation $$P\left(|X - \mu| \geq 2\sigma\right) \leq {1\over2^2} = 0.25$$

2. What is the probability $P_1$ of having at least six heads when tossing a coin ten times?

Solution:

$$ \begin{align*} P(X \geq 6) &= \sum_{x=6}^{10}{10\choose x}0.5^{x}0.5^{10-x}\\ &= 0.3769531 \end{align*} $$ R code:

1 - pbinom(5, 10, 0.5)
# [1] 0.3769531
sum(dbinom(c(6:10), 10, 0.5))
# [1] 0.3769531

3. What is the probability $P_2$ of having at least 60 heads when tossing a coin 100 times?

Solution:

$$ \begin{align*} P(X \geq 60) &= \sum_{x=60}^{100}{100\choose x}0.5^{x}0.5^{100-x}\\ &= 0.02844397 \end{align*} $$ R code:

1 - pbinom(59, 100, 0.5)
# [1] 0.02844397
sum(dbinom(c(60:100), 100, 0.5))
# [1] 0.02844397

Alternatively, we can use normal approximation (generally when $np > 5$ and $n(1-p) > 5$). $\mu = np=50$ and $\sigma = \sqrt{np(1-p)} = \sqrt{25}$. $$ \begin{align*} P(X \geq 60) &= 1 - P(X \leq 59)\\ &= 1- \Phi\left({59.5-50\over \sqrt{25}}\right)\\ &= 1-\Phi(1.9)\\ &= 0.02871656 \end{align*} $$ R code:

1 - pnorm(1.9)
# [1] 0.02871656

4. What is the probability $P_3$ of having at least 600 heads when tossing a coin 1000 times?

Solution: $$ \begin{align*} P(X \geq 600) &= \sum_{x=600}^{1000}{1000\choose x} 0.5^{x} 0.5^{1000-x}\\ &= 1.364232\times10^{-10} \end{align*} $$ R code:

sum(dbinom(c(600:100), 1000, 0.5))
# [1] 1
sum(dbinom(c(600:1000), 1000, 0.5))
# [1] 1.364232e-10

Alternatively, we can use normal approximation. $\mu = np=500$ and $\sigma = \sqrt{np(1-p)} = \sqrt{250}$. $$ \begin{align*} P(X \geq 600) &= 1 - P(X \leq 599)\\ &= 1- \Phi\left({599.5-500\over \sqrt{250}}\right)\\ &= 1.557618 \times 10^{-10} \end{align*} $$ R code:

1 - pnorm(99.5/sqrt(250))
# [1] 1.557618e-10

Reference

  1. Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 4. Pearson. ISBN: 978-0-13-603313-4.
  2. Brink, D. (2010). Essentials of Statistics: Exercises. Chapter 5 & 8. ISBN: 978-87-7681-409-0.

基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

  2. 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution

    PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...

  3. 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

    PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...

  4. 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution

    PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...

  5. 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution

    PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...

  6. 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  7. 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  8. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  9. Common Probability Distributions

    Common Probability Distributions Probability Distribution A probability distribution describes the p ...

随机推荐

  1. unix环境高级编程基础知识之第四章

    1.从当前用户转到root用户:直接输入su命令,然后输入root密码,如果之前没有设置root命令密码会登陆不成功,这里需要命令sudo passwd命令设置密码,然后按照上面输入就成:从root命 ...

  2. 工作随笔——pre-commit钩子限制日志长度和提交的文件类型

    2014-09-18:解决Subversion edge 的hook中文乱码问题 近期检查SVN时发现备份好的文件体积异常庞大.才跑2个月备份出来的大小就有4G多.仔细查询发现很多很多IDE自动生成的 ...

  3. Windows数据类型

    WORD:16位无符号整形数据 DWORD:32字节无符号整型数据(DWORD32) DWORD64:64字节无符号整型数据 INT:32位有符号整型数据类型 INT_PTR:指向INT数据类型的指针 ...

  4. 正式版/免费版 Xamarin 体验与拥抱

    感谢MS, 感谢老纳.终于把 Xamarin 这个磨人的小妖精给收了,在也不用向大神要破解补丁了, 终于可以光明正大的使用了!! 跟据实践, 如果你们想体验一下 .NET 开发 IOS /Androi ...

  5. centos hadoop搭建准备

    永久修改主机名:hostnamectl set-hostname <hostname> IP地址: BOOTPROTO=static IPADDR=192.168.31.128NETMAS ...

  6. How to create a batch of VMs with PowerShell

    Foreword When we do some test that need several VMs, we can use PowerShell script or CmdLets to impl ...

  7. Multiprotocol Label Switching (MPLS)

    Posted by: Margaret Rouse WhatIs.com   Contributor(s): Robert Sturt This definition is part of our E ...

  8. Xen虚拟化基本原理详解

    标签:虚拟化 xen 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://wangzan18.blog.51cto.com/80210 ...

  9. android服务之MP3播放(2)

    该播放器将会直接从网络上获取资源进行播放,并提供进度条显示的功能 布局文件 布局文件中使用Seekbar组件来显示进度条 <?xml version="1.0" encodi ...

  10. 实现解耦-Spring.Net

    spring.net属于IOC(中文名:控制反转)的思想实现. 概念解释: 控制反转概念: 控制反转(Inversion of Control,缩写为IoC),是面向对象编程中的一种设计原则,可以用来 ...