基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution
PMF
If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$, we write $X \sim B(n, p)$. The probability of getting exactly $x$ successes in $n$ trials is given by the probability mass function: $$f(x; n, p) = \Pr(X=x) = {n\choose x}p^{x}(1-p)^{n-x}$$ for $x=0, 1, 2, \cdots$ and ${n\choose x} = {n!\over(n-x)!x!}$.
Proof:
$$ \begin{align*} \sum_{x=0}^{\infty}f(x; n, p) &= \sum_{x=0}^{\infty}{n\choose x}p^{x}(1-p)^{n-x}\\ &= [p + (1-p)]^{n}\;\;\quad\quad \mbox{(binomial theorem)}\\ &= 1 \end{align*} $$
Mean
The expected value is $$\mu = E[X] = np$$
Proof:
$$ \begin{align*} E\left[X^k\right] &= \sum_{x=0}^{\infty}x^{k}{n\choose x}p^{x}(1-p)^{n-x}\\ &= \sum_{x=1}^{\infty}x^{k}{n\choose x}p^{x}(1-p)^{n-x}\\ &= np\sum_{x=1}^{\infty}x^{k-1}{n-1\choose x-1}p^{x-1}(1-p)^{n-x}\quad\quad\quad (\mbox{identity}\ x{n\choose x} = n{n-1\choose x-1})\\ &= np\sum_{y=0}^{\infty}(y+1)^{k-1}{n-1\choose y}p^{y}(1-p)^{n-1-y}\quad(\mbox{substituting}\ y=x-1)\\ &= npE\left[(Y + 1)^{k-1}\right] \quad\quad\quad \quad\quad\quad \quad\quad\quad\quad\quad (Y\sim B(n-1, p)) \\ \end{align*} $$ Using the identity $$ \begin{align*} x{n\choose x} &= {x\cdot n!\over(n-x)!x!}\\ & = {n!\over(n-x)!(x-1)!}\\ &= n{(n-1)!\over[(n-1)-(x-1)]!(x-1)!}\\ &= n{n-1\choose x-1} \end{align*} $$ Hence setting $k=1$ we have $$E[X] = np$$
Variance
The variance is $$\sigma^2 = \mbox{Var}(X) = np(1-p)$$
Proof:
$$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= npE[Y+1] - n^2p^2\\ & = np\left(E[Y] + 1\right) - n^2p^2\\ & = np[(n-1)p + 1] - n^2p^2\quad\quad (Y\sim B(n-1, p))\\ &= np(1-p) \end{align*} $$
Examples
1. Let $X$ be binomially distributed with parameters $n=10$ and $p={1\over2}$. Determine the expected value $\mu$, the standard deviation $\sigma$, and the probability $P\left(|X-\mu| \geq 2\sigma\right)$. Compare with Chebyshev's Inequality.
Solution:
The binomial mass function is $$f(x) ={n\choose x} p^x \cdot q^{n-x},\ x=0, 1, 2, \cdots$$ where $q=1-p$. The expected value and the standard deviation are $$E[X] = np=5,\ \sigma = \sqrt{npq} = 1.581139$$ The probability that $X$ takes a value more than two standard deviations from $\mu$ is $$ \begin{align*} P\left(|X-\mu| \geq 2\sigma\right) &= P\left(|X-5| \geq 3.2\right)\\ &= P(X\leq 1) + P(X \geq9)\\ &= \sum_{x=0}^{1}{10\choose x}p^{x}(1-p)^{10-x} + \sum_{x=9}^{\infty}{10\choose x}p^{x}(1-p)^{10-x}\\ & = 0.02148437 \end{align*} $$ R code:
sum(dbinom(c(0, 1), 10, 0.5)) + 1 - sum(dbinom(c(0:8), 10, 0.5))
# [1] 0.02148437
pbinom(1, 10, 0.5) + 1 - pbinom(8, 10, 0.5)
# [1] 0.02148438
Chebyshev's Inequality gives the weaker estimation $$P\left(|X - \mu| \geq 2\sigma\right) \leq {1\over2^2} = 0.25$$
2. What is the probability $P_1$ of having at least six heads when tossing a coin ten times?
Solution:
$$ \begin{align*} P(X \geq 6) &= \sum_{x=6}^{10}{10\choose x}0.5^{x}0.5^{10-x}\\ &= 0.3769531 \end{align*} $$ R code:
1 - pbinom(5, 10, 0.5)
# [1] 0.3769531
sum(dbinom(c(6:10), 10, 0.5))
# [1] 0.3769531
3. What is the probability $P_2$ of having at least 60 heads when tossing a coin 100 times?
Solution:
$$ \begin{align*} P(X \geq 60) &= \sum_{x=60}^{100}{100\choose x}0.5^{x}0.5^{100-x}\\ &= 0.02844397 \end{align*} $$ R code:
1 - pbinom(59, 100, 0.5)
# [1] 0.02844397
sum(dbinom(c(60:100), 100, 0.5))
# [1] 0.02844397
Alternatively, we can use normal approximation (generally when $np > 5$ and $n(1-p) > 5$). $\mu = np=50$ and $\sigma = \sqrt{np(1-p)} = \sqrt{25}$. $$ \begin{align*} P(X \geq 60) &= 1 - P(X \leq 59)\\ &= 1- \Phi\left({59.5-50\over \sqrt{25}}\right)\\ &= 1-\Phi(1.9)\\ &= 0.02871656 \end{align*} $$ R code:
1 - pnorm(1.9)
# [1] 0.02871656
4. What is the probability $P_3$ of having at least 600 heads when tossing a coin 1000 times?
Solution: $$ \begin{align*} P(X \geq 600) &= \sum_{x=600}^{1000}{1000\choose x} 0.5^{x} 0.5^{1000-x}\\ &= 1.364232\times10^{-10} \end{align*} $$ R code:
sum(dbinom(c(600:100), 1000, 0.5))
# [1] 1
sum(dbinom(c(600:1000), 1000, 0.5))
# [1] 1.364232e-10
Alternatively, we can use normal approximation. $\mu = np=500$ and $\sigma = \sqrt{np(1-p)} = \sqrt{250}$. $$ \begin{align*} P(X \geq 600) &= 1 - P(X \leq 599)\\ &= 1- \Phi\left({599.5-500\over \sqrt{250}}\right)\\ &= 1.557618 \times 10^{-10} \end{align*} $$ R code:
1 - pnorm(99.5/sqrt(250))
# [1] 1.557618e-10
Reference
- Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 4. Pearson. ISBN: 978-0-13-603313-4.
- Brink, D. (2010). Essentials of Statistics: Exercises. Chapter 5 & 8. ISBN: 978-87-7681-409-0.
基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution的更多相关文章
- 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution
PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...
- 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution
PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...
- 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution
PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...
- 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution
PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...
- 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution
PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...
- 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution
PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...
- 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution
PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...
- PRML Chapter 2. Probability Distributions
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...
- Common Probability Distributions
Common Probability Distributions Probability Distribution A probability distribution describes the p ...
随机推荐
- SQLServer 分布式查询MySQL
这学期开了分布式数据库这门课,开始编程实现,今天调试了一早上,写下此配置文件方便查询. 本文实现的是SQLServer2008 Express 链式添加MySql-5.6.10数据库,进行远程操作. ...
- LeetCode 解题报告索引
最近在准备找工作的算法题,刷刷LeetCode,以下是我的解题报告索引,每一题几乎都有详细的说明,供各位码农参考.根据我自己做的进度持续更新中...... ...
- C/C++实践笔记_002编译和链接
1.要卡死程序用异步,同步的话开一个就关一个值为非0死循环.预处理优先于编译,别称预编译main函数死循环2.程序总是从main函数开始执行的C语言本身不提供输入输出语句print等来自于stdio库 ...
- FFmpeg 1.2 for Android 生成一个动态库
上一篇<FFmpeg 1.2 for Android 编译动态库>里沃特跟大家介绍了如何编译动态库,但当时所生成的动态库总共包含10个so文件,这样要是加载起来会严重影响软件的启动速度,后 ...
- Html.BeginForm
该方法用于构建一个From表单的开始,他的构造方法为: Html.BeginForm("ActionName","ControllerName",FormMet ...
- Rectangles Area Sum
#include<iostream> #include<stdio.h> #include<math.h> #include<string.h> #in ...
- mysql 索引2
/* 所有MySQL列类型可以被索引.根据存储引擎定义每个表的最大索引数和最大索引长度. 所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节.大多数存储引擎有更高的限制. 索引的存储类型 ...
- 求二叉树的宽度C语言版
/*层次遍历二叉树,每一层遍历完成以后都重新插入特定的指针 (比如本例使用的特殊指针是数据元素为#,左右儿子为空的指针), 这样在每次访问到所指向数据为#的队列中的结点指针是就知道该指针是这层的末尾, ...
- Velocity教程【转】
原文:http://blog.csdn.net/qq_25237663/article/details/52262532 Velocity是一个基于Java的模板引擎,通过特定的语法,Velocity ...
- python 中的sort 和java中的Collections.sort()函数的使用
x=[1,2,3] x.sort()对的,x这个都变了 y=x.sort()错误 y=sorted(x)对的,x拍好序的一个副本 python中用匿名函数和自定义函数排序:(很奇怪的是比较函数返回的是 ...