高度平衡的二叉搜索树(AVL树)
AVL树的基本概念
AVL树是一种高度平衡的(height balanced)二叉搜索树:对每一个结点x,x的左子树与右子树的高度差(平衡因子)至多为1。
有人也许要问:为什么要有AVL树呢?它有什么作用呢?
我们先来看看二叉搜索树吧(因为AVL树本质上是一棵二叉搜索树),假设有这么一种极端的情况:二叉搜索树结点的插入顺序为1,2,3,4,5,也就是:

显而易见,这棵二叉搜索树已经其退化成一个链表了,也就是说,它在查找上的优势已经全无了—— 在这种情况下,查找一个结点的时间复杂度是O(n)!
如果这棵二叉搜索树是AVL树,在插入顺序仍为1,2,3,4,5的情况下,树的形状如下图:

可以看出,AVL树基本操作的最坏时间复杂度要比普通的二叉搜索树低—— 除去可能的插入操作外(我们将假设懒惰删除),它是O(logn)。
而插入操作隐含着困难的原因在于,插入一个节点可能破坏AVL树的性质(例如,将6插入到上图的AVL树中会破坏根节点2的平衡条件),如果发生这种情况,就要在插入操作结束之前恢复平衡的性质。事实上,这总可以通过对树进行简单的修正来做到,我们称其为旋转。
AVL树的旋转
在AVL树中,假设有一个结点的平衡因子为2(最大就是2,因为结点是一个一个地插入到树中的,一旦出现不平衡的状态就会立即进行调整),我们把这个必须重新平衡的结点叫做被破坏点α。这种不平衡只可能是下面四种情况造成的:
1. 对α的左儿子的左子树进行了一次插入,即LL情况。
2. 对α的左儿子的右子树进行了一次插入,即LR情况。
3. 对α的右儿子的左子树进行了一次插入,即RL情况。
4. 对α的右儿子的右子树进行了一次插入,即RR情况。
情形1和4是关于结点α的镜像对称,2和3也是关于结点α的镜像对称。因此,理论上只有两种情况:第一种情况是插入发生在“外边”的情况(即LL情况或RR情况),第二种情况是插入发生在“内部”的情况(即LR情况或RL情况)。
在AVL树中插入结点后,用于保持树的平衡的旋转操作步骤如下:
步骤一:沿着插入点到根结点的路径检查结点的平衡因子,找到途中第一个不满足AVL树性质的结点,这个结点就是被破坏点α。
步骤二:从被破坏点α开始沿着该路径向下再标记连续的两个结点β、γ,这三个点就是旋转过程将要涉及的三个点(这些点中不一定包括插入点,旋转会使β或γ成为新的根,另外两个点作为根的左右儿子,其他结点根据AVL树的性质放置即可)。
步骤三:判断插入点与被破坏点α之间的关系属于上述四种情况中的哪一种:如果是插入发生在“外边”的情况(即LL的情况或RR的情况),只需要以β为新的根结点顶替被破坏点α的位置进行进行一次单旋转即可完成调整;如果是插入发生在“内部”的情形(即LR的情况或RL的情况),只需要以γ为新的根结点顶替被破坏点α的位置进行稍微复杂的双旋转即可完成调整。

(1) LL基本情况

(2) RR基本情况

(3) LR基本情况

(4) RL基本情况
实例分析
下面给出了一个向AVL树中插入关键字的实例,在已给AVL树的基础上插入9(图中虚线表示),沿着插入点9到根节点的路径发现第一个高度不平衡的结点6,即被破坏点;从被破坏点6开始沿着该路径向下标记6,10,7为α,β,γ;插入点9位于被破坏点6的右儿子10的左子树上,所以属于RL状况;以γ结点7为新的根节点顶替被破坏点6的位置,α结点6和β结点10分别为γ结点7的左右儿子,其他结点根据AVL树的性质放置即可得到右侧的AVL树。


在上面AVL树的基础上继续插入8(图中虚线表示),沿着插入点8到根节点的路径发现第一个高度不平衡的结点为根节点4,即被破坏点;从被破坏点4开始沿着该路径向下标记4,7,10为α,β,γ;插入点8位于被破坏点4的右儿子7的右子树上,所以属于RR状况;以β结点7为新的根节点顶替被破坏点4的位置,α结点4和γ结点10分别为β结点7的左右儿子,其他结点根据AVL树的性质放置即可得到右侧的AVL树。


AVL树是最早的平衡二叉树之一,应用相对其他数据结构较少。Windows对进程地址空间的管理用到了AVL树。
参考资料: 《算法导论第3版》—— 习题 13-3 AVL树
《数据结构与算法分析—Java语言描述》—— 4.4 AVL树
http://blog.chinaunix.net/uid-25324849-id-2182877.html
高度平衡的二叉搜索树(AVL树)的更多相关文章
- 树-二叉搜索树-AVL树
树-二叉搜索树-AVL树 树 树的基本概念 节点的度:节点的儿子数 树的度:Max{节点的度} 节点的高度:节点到各叶节点的最大路径长度 树的高度:根节点的高度 节点的深度(层数):根节点到该节点的路 ...
- lintcode_177_把排序数组转换为高度最小的二叉搜索树
把排序数组转换为高度最小的二叉搜索树 描述 笔记 数据 评测 给一个排序数组(从小到大),将其转换为一棵高度最小的排序二叉树. 注意事项 There may exist multiple vali ...
- lintcode: 把排序数组转换为高度最小的二叉搜索树
题目: 把排序数组转换为高度最小的二叉搜索树 给一个排序数组(从小到大),将其转换为一棵高度最小的排序二叉树. 样例 给出数组 [1,2,3,4,5,6,7], 返回 4 / \ 2 6 / \ / ...
- lintcode.177 把排序数组转换为高度最小的二叉搜索树
把排序数组转换为高度最小的二叉搜索树 描述 笔记 数据 评测 给一个排序数组(从小到大),将其转换为一棵高度最小的排序二叉树. 注意事项 There may exist multiple val ...
- 看动画学算法之:平衡二叉搜索树AVL Tree
目录 简介 AVL的特性 AVL的构建 AVL的搜索 AVL的插入 AVL的删除 简介 平衡二叉搜索树是一种特殊的二叉搜索树.为什么会有平衡二叉搜索树呢? 考虑一下二叉搜索树的特殊情况,如果一个二叉搜 ...
- (4) 二叉平衡树, AVL树
1.为什么要有平衡二叉树? 上一节我们讲了一般的二叉查找树, 其期望深度为O(log2n), 其各操作的时间复杂度O(log2n)同时也是由此决定的.但是在某些情况下(如在插入的序列是有序的时候), ...
- HDU 3179 二叉搜索树(树的建立)
二叉搜索树 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- 平衡二叉搜索树AVL
package com.sunshine.AlgorithmTemplate; import com.sunshine.OFFER66_SECOND.BalanceTreeNode; import c ...
- 平衡二叉搜索树/AVL二叉树 C实现
//AVTree.h #ifndef MY_AVLTREE_H #define MY_AVLTREE_H typedef int ElementType; struct TreeNode { Elem ...
随机推荐
- java 导出Excel文件
最近在做一个文件导出功能,发现大部分博客上通过引用各种的util工具包,其实说白了还是利用apache的poi,在项目中直接导入poi包就可以.直面其原理,随个人喜好封装. 1.首先准备一些poi的j ...
- N的阶乘末尾0的个数和其二进制表示中最后位1的位置
问题一解法: 我们知道求N的阶乘结果末尾0的个数也就是说我们在从1做到N的乘法的时候里面产生了多少个10, 我们可以这样分解,也就是将从0到N的数分解成因式,再将这些因式相乘,那么里面有多少个 ...
- 【bzoj1098】办公楼
[bzoj1098]办公楼 题意 FGD开办了一家电话公司.他雇用了N个职员,给了每个职员一部手机.每个职员的手机里都存储有一些同事的电话号码.由于FGD的公司规模不断扩大,旧的办公楼已经显得十分狭窄 ...
- C#高级进阶--重写函数
这里要说一下,重写是继承时发生,在子类中重新定义父类中的方法.例如:基类方法声明为virtual方法,派生类中使用override声明此方法的重写. 基类中的访问修饰符在子类中是不能被修改的.比如说基 ...
- CSS布局:两列,左边宽度自适应,右边宽度固定200px
<div id="box1"> <div id="left1"></div> <div id="right1 ...
- windows docker测试二 下载container
安装dockertoolbox,提供了一个docker的界面工具 Kitematic 和字符终端: Docker Quickstart Terminal (这里安装的Kitematic 是Alpha版 ...
- 转<%%>、<%=%>、<%$%>、<%@%>的区别
1. 未定义的命名空间前缀“xsd” 上周在项目开发中遇到这样的一个问题,在一个页面用到了自定义的Picker控件,在IE6.7.8.9以及IE10兼容模式下都没有任何问题,但是一换到IE10时已选择 ...
- CentOS7下安装JDK
1.下载JDK,下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html. 测试 ...
- [转]c++类的构造函数详解
c++构造函数的知识在各种c++教材上已有介绍,不过初学者往往不太注意观察和总结其中各种构造函数的特点和用法,故在此我根据自己的c++编程经验总结了一下c++中各种构造函数的特点,并附上例子,希望对初 ...
- Quartz Spring与Spring Task总结
Spring对Quartz作了一个封装,同时,Spring自己也提供了一个任务定时器(spring-task),现把它总结一下. 对于Quartz,我们使用的时候主要是注重两个方面,一个是定时任 ...