1147. Shaping Regions

Time limit: 0.5 second
Memory limit: 64 MB
N opaque rectangles (1 ≤ N ≤ 1000) of various colors are placed on a white sheet of paper whose size is A wide by B long. The rectangles are put with their sides parallel to the sheet's borders. All rectangles fall within the borders of the sheet so that different figures of different colors will be seen.
The coordinate system has its origin (0, 0) at the sheet's lower left corner with axes parallel to the sheet's borders.

Input

The order of the input lines dictates the order of laying down the rectangles. The first input line is a rectangle “on the bottom”. First line contains AB and N, space separated (1 ≤ AB ≤ 10000). Lines 2, …, N + 1 contain five integers each: llxllyurxury, color: the lower left coordinates and upper right coordinates of the rectangle whose color is color (1 ≤ color ≤ 2500) to be placed on the white sheet. The color 1 is the same color of white as the sheet upon which the rectangles are placed.

Output

The output should contain a list of all the colors that can be seen along with the total area of each color that can be seen (even if the regions of color are disjoint), ordered by increasing color. Do not display colors with no area.

Sample

input output
20 20 3
2 2 18 18 2
0 8 19 19 3
8 0 10 19 4
1 91
2 84
3 187
4 38
 
Difficulty: 833
 
题意:有一张n*m的白纸,一开始颜色为1。然后有k张各种颜色的纸放在这张纸上,问最后每种颜色的数量。
分析:
显然又是经典题。
 
一种做法是从后往前做,用并查集维护每行是否被覆盖,总的复杂度是O(n*m),当然这里的是离散化之后的n和m。
只是要注意行和列分开离散化,否则很容易MLE
 
另一种做法是暴力使用切割法,几乎相当于暴力计算对于每块纸会被其他纸遮住多少。
 
我使用了后者,因为离散化太麻烦。
 /**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define ft first
#define sd second
#define mk make_pair inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = , M = ;
struct Rectangle
{
int lx, rx, uy, dy, color;
inline void Read()
{
scanf("%d%d%d%d%d", &lx, &dy, &rx, &uy, &color);
}
} arr[N];
int width, height, n;
int ans[M]; inline void Input()
{
scanf("%d%d%d", &width, &height, &n);
for(int i = ; i <= n; i++)
arr[i].Read();
} inline int Work(int lx, int dy, int rx, int uy, int index)
{
if(lx >= rx || dy >= uy) return ;
while(index <= n && (
lx >= arr[index].rx ||
rx <= arr[index].lx ||
dy >= arr[index].uy ||
uy <= arr[index].dy)) index++;
if(index > n) return (rx - lx) * (uy - dy);
int ret = ;
ret += Work(lx, dy, min(rx, arr[index].lx), uy, index + );
lx = max(lx, min(rx, arr[index].lx)); ret += Work(max(lx, arr[index].rx), dy, rx, uy, index + );
rx = min(rx, max(lx, arr[index].rx)); ret += Work(lx, dy, rx, min(uy, arr[index].dy), index + );
dy = min(dy, max(uy, arr[index].dy)); ret += Work(lx, max(dy, arr[index].uy), rx, uy, index + );
uy = min(uy, max(dy, arr[index].uy)); return ret;
} inline void Solve()
{
ans[] = width * height;
for(int i = n; i >= ; i--)
{
int area = Work(arr[i].lx,
arr[i].dy,
arr[i].rx,
arr[i].uy,
i + );
ans[arr[i].color] += area;
ans[] -= area;
} for(int i = ; i < M; i++)
if(ans[i]) printf("%d %d\n", i, ans[i]);
} int main()
{
Input();
Solve();
return ;
}

ural 1147. Shaping Regions的更多相关文章

  1. ural1147 Shaping Regions

    Shaping Regions Time limit: 0.5 secondMemory limit: 64 MB N opaque rectangles (1 ≤ N ≤ 1000) of vari ...

  2. Shaping Regions(dfs)

    Shaping Regions Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 124  Solved: 39[Submit][Status][Web B ...

  3. USACO 6.2 Shaping Regions

    Shaping Regions N opaque rectangles (1 <= N <= 1000) of various colors are placed on a white s ...

  4. OI暑假集训游记

    莞中OI集训游记 Written BY Jum Leon. I        又是一载夏,本蒟蒻以特长生考入莞中,怀着忐忑的心情到了8月,是集训之际.怀着对算法学习的向往心情被大佬暴虐的一丝恐惧来到了 ...

  5. USACO 完结的一些感想

    其实日期没有那么近啦……只是我偶尔还点进去造成的,导致我没有每一章刷完的纪念日了 但是全刷完是今天啦 讲真,题很锻炼思维能力,USACO保持着一贯猎奇的题目描述,以及尽量不用高级算法就完成的题解……例 ...

  6. [LeetCode] Surrounded Regions 包围区域

    Given a 2D board containing 'X' and 'O', capture all regions surrounded by 'X'. A region is captured ...

  7. 验证LeetCode Surrounded Regions 包围区域的DFS方法

    在LeetCode中的Surrounded Regions 包围区域这道题中,我们发现用DFS方法中的最后一个条件必须是j > 1,如下面的红色字体所示,如果写成j > 0的话无法通过OJ ...

  8. Leetcode: Surrounded regions

    Given a 2D board containing 'X' and 'O', capture all regions surrounded by 'X'. A region is captured ...

  9. LEETCODE —— Surrounded Regions

    Total Accepted: 43584 Total Submissions: 284350 Difficulty: Medium Given a 2D board containing 'X' a ...

随机推荐

  1. 添加本地jar到Maven库

    转自:http://dk05408.iteye.com/blog/2170986 上传: mvn install:install-file -Dfile=D:/workspace/p2p_server ...

  2. nfs server的配置 Starting NFS daemon: [FAILED]

    总结了一下是nfs server的制作过程:nfs(Network File System)其实就是说,这个机器的硬盘不够了,我要把文件放到别的服务器上去,服务器端的配置如下:首先(1)确保你的机器上 ...

  3. MongoDB C API

    一.编译mongodb c driver: 编译完成之后在c:\mongo-c-driver目录下有bin.include.lib三个文件夹,分别包含所需的dll..h文件.lib. 在自己的项目中引 ...

  4. LR性能指标分析

    Memory: ·Available Mbytes 简述:可用物理内存数.如果Available Mbytes的值很小(4 MB或更小),则说明计算机上总的内存可能不足,或某程序没有释放内存. 参考值 ...

  5. iOS 获取当前展示的页面

    - (UIViewController *)getCurrentVC { UIViewController *result = nil; UIWindow * window = [[UIApplica ...

  6. zip 压缩文件 unzip查看zip压缩包内的内容

    [root@GitLab tmp]# zip -r new.zip ./*  adding: gitlab_key_file20161001-2668-1eu44mv (deflated 15%)  ...

  7. 列出zip文件内全部内容 当前目录下的所有文件压缩成zip格式的文件(file.zip)

    [root@ok Desktop]# zip -r image.zip ./*.jpg adding: 20161007_113743.jpg (deflated 0%) adding: 201610 ...

  8. EF – 问题集锦

    1.对一个或多个实体的验证失败.有关详细信息,请参见“EntityValidationErrors”属性 在EF5.0修改实体的时候,出现“对一个或多个实体的验证失败.有关详细信息,请参见“Entit ...

  9. 并发中的Native方法,CAS操作与ABA问题

    Native方法,Unsafe与CAS操作 >>JNI和Native方法 Java中,通过JNI(Java Native Interface,java本地接口)来实现本地化,访问操作系统底 ...

  10. Tkprof工具详解一

      注明:一些文章是从别人的博客中转载过来的,方便自己以后查阅:在数据库生成的oracle trace文件中,可读性是比较差的,此时可使用tkprof工具来格式化trace文件,tkprof是一个命令 ...