For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1:

Given n = 4edges = [[1, 0], [1, 2], [1, 3]]

        0
|
1
/ \
2 3

return [1]

Example 2:

Given n = 6edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

     0  1  2
\ | /
3
|
4
|
5

return [3, 4]

分析:

首先笨办法,假设每个点都是root, 然后利用BFS,看那个root到最后一个leaf的高度是多少,如果比目前找到的更小,则更新,如果相同,则把那个点加到list里。

 public List<Integer> findMinHeightTrees(int n, int[][] edges) {
List<Integer> all = new ArrayList<Integer>();
if (n <= ) {
all.add();
return all;
} Map<Integer, List<Integer>> map = new HashMap<>(); for (int i = ; i < n; i++) {
map.put(i, new ArrayList<Integer>());
} for (int[] edge : edges) {
map.get(edge[]).add(edge[]);
map.get(edge[]).add(edge[]);
} int minHeight = Integer.MAX_VALUE;
List<Integer> temp = new ArrayList<>();
for (int i = ; i < n; i++) {
int height = ;
boolean[] visited = new boolean[n];
visited[i] = true;
List<Integer> list = map.get(i);
while (list.size() != ) {
for (Integer k : list) {
if (!visited[k]) {
visited[k] = true;
temp.addAll(map.get(k));
}
}
list = temp;
temp = new ArrayList<>();
height++;
}
if (height < minHeight) {
all.clear();
all.add(i);
minHeight = height;
} else if (height == minHeight) {
all.add(i);
}
}
return all;
}

更好的方法,先构成一棵树,把数的叶子逐层的砍掉(叶子的degree为1),当这棵树只剩下2颗或者不到两颗的节点的时候,就停止。

 public class Solution {
public List<Integer> findMinHeightTrees(int n, int[][] edges) {
List<Integer> leaves = new ArrayList<Integer>();
if (n <= ) {
leaves.add();
return leaves;
} List<Set<Integer>> graph = new ArrayList<>(); for (int i = ; i < n; i++) {
graph.add(new HashSet<Integer>());
} for (int[] edge : edges) {
graph.get(edge[]).add(edge[]);
graph.get(edge[]).add(edge[]);
} for (int i = ; i < n; i++) {
if (graph.get(i).size() == ) {
leaves.add(i);
}
} while (n > ) {
n -= leaves.size();
List<Integer> newLeaves = new ArrayList<>();
for (int leave : leaves) {
for (int newLeaf : graph.get(leave)) {
graph.get(newLeaf).remove(leave);
if (graph.get(newLeaf).size() == ) {
newLeaves.add(newLeaf);
}
}
}
leaves = newLeaves;
} return leaves;
}
}

Minimum Height Trees的更多相关文章

  1. [LeetCode] Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  2. LeetCode Minimum Height Trees

    原题链接在这里:https://leetcode.com/problems/minimum-height-trees/ 题目: For a undirected graph with tree cha ...

  3. 310. Minimum Height Trees

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  4. leetcode@ [310] Minimum Height Trees

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  5. [LeetCode] 310. Minimum Height Trees 解题思路

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  6. [Swift]LeetCode310. 最小高度树 | Minimum Height Trees

    For an undirected graph with tree characteristics, we can choose any node as the root. The result gr ...

  7. 310. Minimum Height Trees -- 找出无向图中以哪些节点为根,树的深度最小

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  8. Minimum Height Trees -- LeetCode

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  9. [LeetCode] 310. Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

随机推荐

  1. MSSQL数据库链接字符串Asynchronous Processing=true不是异步查询吗,怎么是缓存

    ;Asynchronous Processing=true  不是异步查询吗,怎么是缓存 <!--<add name="default" providerName=&q ...

  2. 记录两张数据库表及Ibatis操作

    建表语句 CREATE TABLE `TS_MopayInvoiceComposition` ( `ID` int(11) NOT NULL AUTO_INCREMENT, `RequestID` i ...

  3. VFP笔记

    1.计算圆的面积的计算器 650) this.width=650;" src="http://s3.51cto.com/wyfs02/M01/12/43/wKiom1MAsFzxm ...

  4. mongodb在WEB开发中的应用与实践

    一.mongodb是什么? 一套高性能.易开发的文档型数据库.他使用键值对形式存放数据,能够存放包括字符串.数组.数据序列.图片.视频等在内的大多数数据文档.MongoDB完善的设计,搞笑的可编程性使 ...

  5. oracle 中的trunc()函数及加一个月,一天,一小时,一分钟,一秒钟方法

    返回处理后的数据,不同于round()(对数值进行四舍五入处理),该函数不对指定小数前或后的数值部分进行舍入处理. 语法:trunc(number[,decimals]) 其中,number为待做处理 ...

  6. 【Auto Layout】Xcode6及以上版本,创建Auto Layout 约束时产生的一些变化【iOS开发教程】

    [#Auto Layout#]Xcode6创建Auto Layout 约束时产生的一些变化     通过两个小Demo来展示下变化: Demo1需求: 为控制器的根视图(图中的“控制器View”)的子 ...

  7. input lable水平对齐

    1.CSS <style type="text/css">       input,label { vertical-align:middle;} </style ...

  8. GATK软件介绍

    背景介绍 GATK全称是The Genome Analysis Toolkit,是Broad Institute(The Broad Institute, formerly the Broad Ins ...

  9. Swift2.1 语法指南——访问控制

    原档:https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Programmi ...

  10. sql2008以上行转列的方法

    SELECT [column1],[column2],[column3],[column4],[column5]FROM (select name,id from [tableName] where ...