Fast Walsh-Hadamard Transform

.pre

今天本来想看FFT的应用的...翻翻picks的博客发现了好东西Fast Walsh-Hadamard Transform,感觉挺有趣的...就写了一下...orz

.intro

Fast Walsh-Hadamard Transform(FWT)是用来解决一类卷积问题的.((当整篇文章看完后)如果你还是不知道什么样的卷积能做,戳这里,最后一篇vfk大大的论文集合幂级数与xxxxxx)

准确地说,我们给出两个长度都为\(2^m\)的序列\(A_0\dots A_{2^m-1}\),\(B_0\dots B_{2^m-1}\),显然对于每一个下标我们都可以把它分解成一个唯一的长度为\(m\)的二进制数(开头补0).我们需要求出一个它们的xor卷积,即一个序列\(C_0..C_{2^m-1}\)满足:

\[C_k=\sum_{i\otimes j=k}A_iB_j
\]

其中\(a\otimes b\)表示\(a\) xor \(b\).

FWT的基本思想就是对每一位分开讨论,恩,因为xor是按位做的,我们显然可以按位讨论..

然后Picks不知道怎么做了,恩.

然而窝也不知道怎么做了,恩.

然后Picks有结论!背结论大法吼:

(等等窝先出个表示法)

由于是一个长度为\(2^m\)的序列,我们可以将此序列按数字大小二分,两半在原序列里是连续的且长度相同.显然此时我们把这个序列按照最高位分开了.我们记这个过程为\(A=(A_0,A_1)\),\(A_0\)就是小的那一半.

我们定义对于一个序列做FWT为\(tf(A)\),然后\(tf(|A|=1,A)=A_0\).\(|A|\)表示\(A\)的长度.

(结论)

这时\(tf(A)=(tf(A_0)+tf(A_1),tf(A_0)-tf(A_1))\).(错了去找Picks> <还有vfk证明过这个东西去找vfk> <)

然后...好像就没了?

当然FWT只是对一个序列A进行的操作...其实这相当于一个FFT,要求出卷积还需要再对B最一次tf(b),把结果在同一个位置上的数相乘,然后再做IFFT(口胡,其实是IFWT).

IFWT也很简单,\(itf(A)=(itf\left(\frac{A_0+A_1}{2}\right),itf\left(\frac{A_0-A_1}{2}\right))\).

(补充一个表示法)

对于两个等长的序列,我们定义

\[A+B=C \rightarrow C_k=A_k+B_k
\]

\[A-B=C \rightarrow C_k=A_k-B_k
\]

\[A\times B=C \rightarrow C_k=A_k\times B_k
\]

(总结)

那么我们就会做FWT了,因为

\[A*B=itf(tf(A)\times tf(B))
\]

.code

void fwt_xor(ll* x,int r){
for(int i=2,p=1;i<=r;i<<=1,p<<=1){
int u=r-i;
for(int j=0,ux=p;j<=u;j+=i,ux+=i){
for(int k=j;k<ux;++k){
ll kx=x[k],ky=x[k+p];
x[k]=kx+ky,x[k+p]=kx-ky;
}
}
}
}
void fwt_xor_inv(ll* x,int r){
for(int i=r,p=r>>1;p;i>>=1,p>>=1){
int u=r-i;
for(int j=0,ux=p;j<=u;j+=i,ux+=i){
for(int k=j;k<ux;++k){
x[k]=(x[k]+x[k+p])>>1;
x[k+p]=x[k]-x[k+p];
}
}
}
}

代码未经测试,慎用.

.ext

.op.and

\[tf(A)=(tf(A_0)+tf(A_1),tf(A_1))
\]

\[itf(A)=(itf(A_0)-itf(A_1),itf(A_1))
\]

void fwt_and(ll* x,int r){
for(int i=2,p=1;i<=r;i<<=1,p<<=1){
int u=r-i;
for(int j=0,ux=p;j<=u;j+=i,ux+=i){
for(int k=j;k<ux;++k) x[k]+=x[k+p];
}
}
}
void fwt_and_inv(ll* x,int r){
for(int i=2,p=1;i<=r;i<<=1,p<<=1){
int u=r-i;
for(int j=0,ux=p;j<=u;j+=i,ux+=i){
for(int k=j;k<ux;++k) x[k]-=x[k+p];
}
}
}

.op.or

\[tf(A)=(tf(A_0),tf(A_1)+tf(A_0))
\]

\[itf(A)=(itf(A_0),itf(A_1)-itf(A_0))
\]

void fwt_or(ll* x,int r){
for(int i=2,p=1;i<=r;i<<=1,p<<=1){
int u=r-i;
for(int j=0,ux=p;j<=u;j+=i,ux+=i){
for(int k=j;k<ux;++k) x[k+p]+=x[k];
}
}
}
void fwt_or_inv(ll* x,int r){
for(int i=2,p=1;i<=r;i<<=1,p<<=1){
int u=r-i;
for(int j=0,ux=p;j<=u;j+=i,ux+=i){
for(int k=j;k<ux;++k) x[k+p]-=x[k];
}
}
}

.ps

关于FWT modulo prime

我们可以显然地处理FWT modulo prime,只需要取个模就好了(不是废话么= =)..

还有...关于如何求\(2^{-1}\equiv x\pmod{p}\)中的\(x\)...直接x=(p+1)>>2...显然满足性质..

FWT for xor 的模数需要与2互素.

.pps

我可能会出一道裸题..恩就是这个鬼卷积...放到某奇怪的OJ上供测试- -.

FWT的更多相关文章

  1. FWT与High dick(划掉改成Dimensional) Fourier Transform

    我们大家都知道xor卷积有个很好的做法:FWT.FWT的变换形式是很好看的 // 说明一下Vector可以向量化运算,也可以当做数组来slice与concat Vector tf(A,2^n){ Ve ...

  2. Codeforces663E Binary Table(FWT)

    题目 Source http://codeforces.com/contest/663/problem/E Description You are given a table consisting o ...

  3. HDU5909 Tree Cutting(树形DP + FWT)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5909 Description Byteasar has a tree T with n ve ...

  4. CROC 2016 - Final Round [Private, For Onsite Finalists Only] C. Binary Table FWT

    C. Binary Table 题目连接: http://codeforces.com/problemset/problem/662/C Description You are given a tab ...

  5. 卷积FFT、NTT、FWT

    先简短几句话说说FFT.... 多项式可用系数和点值表示,n个点可确定一个次数小于n的多项式. 多项式乘积为 f(x)*g(x),显然若已知f(x), g(x)的点值,O(n)可求得多项式乘积的点值. ...

  6. FWT 学习总结

    我理解的FWT是在二元运算意义下的卷积 目前比较熟练掌握的集合对称差卷积 对于子集卷积和集合并卷积掌握不是很熟练(挖坑ing) 那么就先来谈一谈集合对称差卷积吧 所谓集合对称差卷积 就是h(i)=si ...

  7. HDU 5823 color II(FWT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5823 [题目大意] 定义一张无向图的价值:给每个节点染色使得每条边连接的两个节点颜色不相同的最少颜 ...

  8. hdu 5909 Tree Cutting [树形DP fwt]

    hdu 5909 Tree Cutting 题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数 \(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数 ...

  9. 关于快速沃尔什变换(FWT)的一点学习和思考

    最近在学FWT,抽点时间出来把这个算法总结一下. 快速沃尔什变换(Fast Walsh-Hadamard Transform),简称FWT.是快速完成集合卷积运算的一种算法. 主要功能是求:,其中为集 ...

随机推荐

  1. My latest news (--2016.10)

    2016.10.31 22:44 一个“程序”,打代码占40%.思考占60% 2016.10.30 20:53 周末,话说今天有晚上讲座,还点名,了,悲催.之前学习的Qt有点问题,悲催.推荐个博文:h ...

  2. Quagga服务器安装和配置

    使用本地源 一.安装软件包 # yum install quagga-0.99.15-7.el6_3.2.x86_64.rpm 或rpm   # ls /etc/quagga/ bgpd.conf.s ...

  3. struts2 拦截器和actioninvocation、PreResultListener

       Interceptor说明 Interceptor的接口定义没有什么特别的地方,除了init和destory方法以外,intercept方法是实现整个拦截器机制的核心方法.而它所依赖的参数Act ...

  4. array_map()与array_shift()搭配使用 PK array_column()函数

    array_map()与arra_shift()搭配使用,还是来看例子吧,比较直观一点 <?php $user = array( 0 => array( 'name' => '张三' ...

  5. QT入门

    QT += core gui widgets //引入需要用到的库 qDebug()<<"t="<<t<<QTime::currentTime( ...

  6. linux安装软件通常会做哪些事

    一般来说,安装某个包,某个服务,某个软件时,可能会做以下事情(不一定全部) - 在安装目录: /usr/bin, /usr/lib: /usr/you_specified_bin/, /usr/you ...

  7. 我的linux桌面

    经过几次尝试安装linux系统之后,终于把自己的系统安装成了linux系统. wangkongming@ThinkPad-T410 ~ $ lsb_release -a No LSB modules ...

  8. Python学习笔记(迭代、模块扩展、GUI 、编码处理等)

    PythonIDLE中的编码处理 http://www.tuicool.com/articles/NbyEBr 原文标题:Python中实际上已经得到了正确的Unicode或某种编码的字符,但是看起来 ...

  9. Collection类相关总结

    集合类的框架如下: Collection(接口)    List(接口):允许重复.         ArrayList         Vector         LinkedList    Se ...

  10. jupyter notebook + pyspark 环境搭建

    安装并启动jupyter 安装 Anaconda 后, 再安装 jupyter pip install jupyter 设置环境 ipython --ipython-dir= # override t ...