https://en.wikipedia.org/wiki/Cluster_analysis

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is a main task of exploratory data mining, and a common technique for statistical data analysis, used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, bioinformatics, data compression, and computer graphics.

Cluster analysis itself is not one specific algorithm, but the general task to be solved. It can be achieved by various algorithms that differ significantly in their notion of what constitutes a cluster and how to efficiently find them. Popular notions of clusters include groups with small distances among the cluster members, dense areas of the data space, intervals or particular statistical distributions. Clustering can therefore be formulated as a multi-objective optimization problem. The appropriate clustering algorithm and parameter settings (including values such as the distance function to use, a density threshold or the number of expected clusters) depend on the individual data set and intended use of the results. Cluster analysis as such is not an automatic task, but an iterative process of knowledge discovery or interactive multi-objective optimization that involves trial and failure. It is often necessary to modify data preprocessing and model parameters until the result achieves the desired properties.

Besides the term clustering, there are a number of terms with similar meanings, including automatic classification, numerical taxonomy, botryology (from Greek βότρυς "grape") and typological analysis. The subtle differences are often in the usage of the results: while in data mining, the resulting groups are the matter of interest, in automatic classification the resulting discriminative power is of interest.

Cluster analysis was originated in anthropology by Driver and Kroeber in 1932 and introduced to psychology by Zubin in 1938 and Robert Tryon in 1939[1][2] and famously used by Cattell beginning in 1943[3] for trait theory classification in personality psychology.

Cluster analysis的更多相关文章

  1. cluster analysis in data mining

    https://en.wikipedia.org/wiki/K-means_clustering k-means clustering is a method of vector quantizati ...

  2. UVALive 6906 Cluster Analysis 并查集

    Cluster Analysis 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemi ...

  3. UVALive 6906 A - Cluster Analysis

    思路:排个序,依次选就好了. #include <bits/stdc++.h> #define PB push_back #define MP make_pair using namesp ...

  4. K-Means 聚类算法

    K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Clus ...

  5. 地理信息系统 - ArcGIS - 高/低聚类分析工具(High/Low Clustering ---Getis-Ord General G)

    前段时间在学习空间统计相关的知识,于是把ArcGIS里Spatial Statistics工具箱里的工具好好研究了一遍,同时也整理了一些笔记上传分享.这一篇先聊一些基础概念,工具介绍篇随后上传. 空间 ...

  6. K-means聚类算法

    聚类分析(英语:Cluster analysis,亦称为群集分析) K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般.最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中, ...

  7. Bioinformatics Glossary

    原文:http://homepages.ulb.ac.be/~dgonze/TEACHING/bioinfo_glossary.html Affine gap costs: A scoring sys ...

  8. (转) Deep Learning Research Review Week 2: Reinforcement Learning

      Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/ad ...

  9. Spark入门实战系列--8.Spark MLlib(下)--机器学习库SparkMLlib实战

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .MLlib实例 1.1 聚类实例 1.1.1 算法说明 聚类(Cluster analys ...

随机推荐

  1. VS读取文件或写入文件时出现中文乱码问题

    最近我发现我从文本文档中读取文件处理后再存入新文本文档后,只要是有中文的都显示乱码了~~当我把中文去掉后一切又都正常了,而在我处理过程中,很确定没有对中文进行处理.使用记事本打开发现没有乱码现象,但是 ...

  2. Java Hour 15 以写小说的心态

    有句名言,叫做10000小时成为某一个领域的专家.姑且不辩论这句话是否正确,让我们到达10000小时的时候再回头来看吧. 突然想到我最近一直在追的小说,作者每天都会更新两章,而且质量挺高.所以从这篇开 ...

  3. poj 3468 成段增减

    Sample Input 10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4 Sample Output 4 55 9 15 #inc ...

  4. (六)WebRTC手记之WebRtcVideoEngine2模块

    转自:http://www.cnblogs.com/fangkm/p/4401143.html 终于讲到视频数据的编码发送模块了,不容易.总体来说也看了不少时间WebRTC的源码了,最大的感触就是各个 ...

  5. 在Linux中创建静态库.a和动态库.so

    转自:http://www.cnblogs.com/laojie4321/archive/2012/03/28/2421056.html 在Linux中创建静态库.a和动态库.so 我们通常把一些公用 ...

  6. Rational Software Architect V8.5.1安装

    转自:http://blog.sina.com.cn/s/blog_4a0238270101bupg.html IBM Rational Software Architect (RSA) 是 IBM ...

  7. WebStorm9

    下载地址: http://www.onlinedown.net/soft/554406.htm 注册码: UserName:William===== LICENSE BEGIN =====45550- ...

  8. jmeter也有loadrunner一样的图像

    一.准备工具 1.JMeterPlugins-Standard-1.4.0.zip下载地址: http://yunpan.cn/c6Dk9tDdj8Lvq  访问密码 4538 2.ServerAge ...

  9. Xamarin.iOS项目提示error MSB3174:”TargetFrameworkVersion”的值无效

    Xamarin.iOS项目提示error MSB3174:”TargetFrameworkVersion”的值无效 错误信息:MSBulid\14.0\bin\Microsoft.Common.Cur ...

  10. WCF:2个常见错误

      1.另一应用程序已使用 HTTP.SYS 注册了该 URL 在做WCF wsDualHttpBinding的时候,调试时会出现此异常. 其意思为:有一个Host已经启动了,占用了指定的端口了. & ...