codeforce 359D 二分+ 动态规划(sparse table)
原题链接:http://codeforces.com/problemset/problem/359/D
思路:首先对符合题目的长度(r-l)从0到n-1进行二分查找,对每一个长度进行check,看是否满足条件。
满足条件的话需要区间【l,r】内的最小值和最大公约数相等,如果暴力搜索,会超时,故采用st(sparse table)算法,建立table只需要O(nlgn)时间,查询是O(1),远远小于暴力搜索
st算法具体可参考http://baike.baidu.com/view/1536346.htm#2,只要适用于一段区间内的最大最小等值的计算。
AC代码如下:
#include <iostream>
#include <cstdio>
#include <iomanip>
#include <algorithm>
#include <map>
#include <set>
#include <string>
#include <vector>
#include <string.h>
#include <math.h>
using namespace std;
typedef long long ll;
const int MAXN = 300050;
int arr[MAXN];
int dp[MAXN][20];//gcd
int dq[MAXN][20];//min
int n;
int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
bool ok(int x)
{
int k = (int)(log((double)(x+1)) / log(2.0));
for(int i=0;i<n-x;i++)
{
int j = i+x; int Min = min(dq[i][k],dq[j - (1<<k) + 1][k]);
int g = gcd(dp[i][k],dp[j - (1<<k) + 1][k]);
if(g==Min)
return true;
}
return false;
}
void out(int x)
{
vector<int> v;
int k = (int)(log((double)(x+1)) / log(2.0));
if(x>0)
{
for(int i=0;i<n-x;i++)
{
int j = i+x;
int Min = min(dq[i][k],dq[j - (1<<k) + 1][k]);
int g = gcd(dp[i][k],dp[j - (1<<k) + 1][k]);
if(g==Min)
{
v.push_back(i);
}
}
}
else
{
for(int i=0;i<n;i++)
v.push_back(i);
}
cout<<v.size()<<" "<<( x>0?x:0)<<endl;
for(int i=0;i<v.size();i++)
cout<<v[i]+1<<" ";
cout<<endl;
}
int main()
{
cin>>n;
for(int i=0;i<n;i++)
cin>>arr[i];
for(int i=0;i<n;i++)
{
dp[i][0] = arr[i];
dq[i][0] = arr[i];
}
for(int i=1;i<20;i++)
for(int j = 0;j<n;j++)
{
dp[j][i]=dp[j-1][i];
dq[j][i] = dq[j-1][i];
if(j+(1<<(i-1))<n)
{
dq[j][i] = min(dq[j][i-1],dq[j+(1<<(i-1))][i-1]);
dp[j][i] = gcd(dp[j][i-1],dp[j+(1<<(i-1))][i-1]);
} } int l = 0;int r = n-1;
while(l<r)
{
int mid = (l+r+1)/2;
if(ok(mid))
l = mid;
else
r = mid-1;
} out(l);
return 0;
}
codeforce 359D 二分+ 动态规划(sparse table)的更多相关文章
- RMQ ---- ST(Sparse Table)算法
[概述] RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返 ...
- 一维二维Sparse Table
写在前面: 记录了个人的学习过程,同时方便复习 Sparse Table 有些情况,需要反复读取某个指定范围内的值而不需要修改 逐个判断区间内的每个值显然太浪费时间 我们希望用空间换取时间 ST表就是 ...
- RMQ(ST(Sparse Table))(转载)
1. 概述 RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A ...
- 二分+动态规划 POJ 1973 Software Company
Software Company Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 1112 Accepted: 482 D ...
- codeforces 359D 二分答案+RMQ
上学期刷过裸的RMQ模板题,不过那时候一直不理解>_< 其实RMQ很简单: 设f[i][j]表示从i开始的,长度为2^j的一段元素中的最小值or最大值 那么f[i][j]=min/max{ ...
- codeforce 626E(二分)
E. Simple Skewness time limit per test 3 seconds memory limit per test 256 megabytes input standard ...
- 【HDU 5808】 Price List Strike Back (整体二分+动态规划)
Price List Strike Back There are nn shops numbered with successive integers from 11 to nn in Bytelan ...
- BZOJ2151 种树(贪心+堆+链表/wqs二分+动态规划)
dp容易想到,但没法进一步优化了. 考虑贪心,每次选出价值最大的物品.但这显然是不对的因为会影响其他物品的选择. 于是考虑加上反悔操作.每次选出一个物品后,将其相邻两物品删除,再将原物品价值变为相邻两 ...
- 【洛谷P1281 书的复制】二分+动态规划
分析 两个做法,一个DP,一个是二分. 二分:也就是二分枚举每个人分到的东西. DP:区间DP F[I][J]表示前i本书分给j个人用的最短时间 由于每一次j的状态由比j小的状态得出,所以要先枚举j, ...
随机推荐
- iOS开发编译报错、常见问题(实时更新)
一.报错与警报 1.错误代码:No architectures to compile for (ONLY_ACTIVE_ARCH=YES, active arch=x86_64, VALID_ARCH ...
- 关于提交form不刷新的问题
最近在做一个项目,除去主页面是html页面,点击菜单按钮都由ajax加载生成,在这种情景下,F5刷新或者提交form表单就会将页面回复到刚刚打开主页面. 现在有一个这样的场景,点击子菜单生成一个子页面 ...
- iptables-qos-tcpcopy-tc-tcpdump
QOS: https://www.chiphell.com/thread-427876-1-1.html iptables指南: http://man.chinaunix.net/network/ip ...
- MC的一些具体的应用的例子的总结
任何东西,都有其适用的场景,在合适的场景下,才能发挥好更大的作用. 对于memcached,使用内存来存取数据,一般情况下,速度比直接从数据库和文件系统读取要快的多. memcached的最常用的场景 ...
- jquery validate ajax submit form
when the jquery validation plugin is used for validating the form data, such as below: html code: &l ...
- pcA降维算法
http://ufldl.stanford.edu/wiki/index.php/主成分分析 if ~exist('train_IM_all','var')||~exist('train_LA_all ...
- spi_flash
http://blog.chinaunix.net/uid-27406766-id-3384699.html
- 分布式Hbase-0.98.4在Hadoop-2.2.0集群上的部署
fesh个人实践,欢迎经验交流!本文Blog地址:http://www.cnblogs.com/fesh/p/3898991.html Hbase 是Apache Hadoop的数据库,能够对大数据提 ...
- js实现倒计时及时间对象
JS实现倒计时效果代码如下: <!doctype html> <html> <head> <meta charset="utf-8"> ...
- nyoj 737 石子合并(一)。区间dp
http://acm.nyist.net/JudgeOnline/problem.php?pid=737 数据很小,适合区间dp的入门 对于第[i, j]堆,无论你怎么合并,无论你先选哪两堆结合,当你 ...