题目链接:hdu 1028 Ignatius and the Princess III

题意:对于给定的n,问有多少种组成方式

思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是dp[i][i]。那么dp[i][j]=dp[i][j-1]+dp[i-j][i-j],dp[i][j-1]是累加1到j-1的结果,dp[i-j][i-j]表示的就是最大为j,然后i-j有多少种表达方式啦。因为i-j可能大于j,这与我们定义的j为最大值矛盾,所以要去掉大于j的那些值

/**************************************************************
Problem:hdu 1028
User: youmi
Language: C++
Result: Accepted
Time:15MS
Memory:1908K
****************************************************************/
//#pragma comment(linker, "/STACK:1024000000,1024000000")
//#include<bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#include <cmath>
#include <queue>
#include <deque>
#include <string>
#include <vector>
#define zeros(a) memset(a,0,sizeof(a))
#define ones(a) memset(a,-1,sizeof(a))
#define sc(a) scanf("%d",&a)
#define sc2(a,b) scanf("%d%d",&a,&b)
#define sc3(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define scs(a) scanf("%s",a)
#define sclld(a) scanf("%I64d",&a)
#define pt(a) printf("%d\n",a)
#define ptlld(a) printf("%I64d\n",a)
#define rep(i,from,to) for(int i=from;i<=to;i++)
#define irep(i,to,from) for(int i=to;i>=from;i--)
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define lson (step<<1)
#define rson (lson+1)
#define eps 1e-6
#define oo 0x3fffffff
#define TEST cout<<"*************************"<<endl
const double pi=*atan(1.0); using namespace std;
typedef long long ll;
template <class T> inline void read(T &n)
{
char c; int flag = ;
for (c = getchar(); !(c >= '' && c <= '' || c == '-'); c = getchar()); if (c == '-') flag = -, n = ; else n = c - '';
for (c = getchar(); c >= '' && c <= ''; c = getchar()) n = n * + c - ''; n *= flag;
}
int Pow(int base, ll n, int mo)
{
if (n == ) return ;
if (n == ) return base % mo;
int tmp = Pow(base, n >> , mo);
tmp = (ll)tmp * tmp % mo;
if (n & ) tmp = (ll)tmp * base % mo;
return tmp;
}
//*************************** int n;
const int maxn=+;
ll dp[maxn][maxn];
void init()
{
zeros(dp);
dp[][]=;
rep(i,,)
{
rep(j,,i)
{
dp[i][j]=dp[i][j-]+dp[i-j][i-j];
if(j<(i+)/)
dp[i][j]-=dp[i-j][i-j]-dp[i-j][j];
}
}
} int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
init();
while(~sc(n))
{
ptlld(dp[n][n]);
}
}

hdu 1028 Ignatius and the Princess III 简单dp的更多相关文章

  1. HDU 1028 Ignatius and the Princess III:dp or 母函数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1028 题意: 给你一个正整数n,将n拆分成若干个正整数之和,问你有多少种方案. 注:"4 = ...

  2. HDU 1028 Ignatius and the Princess III 整数的划分问题(打表或者记忆化搜索)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1028 Ignatius and the Princess III Time Limit: 2000/1 ...

  3. hdu 1028 Ignatius and the Princess III(DP)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  4. HDU 1028 Ignatius and the Princess III (母函数或者dp,找规律,)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. hdu 1028 Ignatius and the Princess III 母函数

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. hdu 1028 Ignatius and the Princess III (n的划分)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  7. HDU 1028 Ignatius and the Princess III (递归,dp)

    以下引用部分全都来自:http://blog.csdn.net/ice_crazy/article/details/7478802  Ice—Crazy的专栏 分析: HDU 1028 摘: 本题的意 ...

  8. HDU 1028 Ignatius and the Princess III (生成函数/母函数)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

  9. HDU 1028 Ignatius and the Princess III (动态规划)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

随机推荐

  1. 容器--Collection和AbstractCollection

    一.前言 容器是JAVA中比较重要的一块,整个体系设计得非常好,同时对于代码学习来说也是比较好的范例.同时很多面试官也比较喜欢用容器来考察面试者的基础知识,所以掌握好容器还是比较重要的.本文主要总结一 ...

  2. Verilog学习笔记设计和验证篇(三)...............同步有限状态机的指导原则

    因为大多数的FPGA内部的触发器数目相当多,又加上独热码状态机(one hot code machine)的译码逻辑最为简单,所以在FPGA实现状态机时,往往采用独热码状态机(即每个状态只有一个寄存器 ...

  3. ahjesus Unity3D XML注释被编译的问题

    public class XMLStringReader : MonoBehaviour { public string slectedItem; private bool editing = fal ...

  4. HTML Jquery

    在<网页制作Dreamweaver(悬浮动态分层导航)>中,运用到了jQuery的技术,轻松实现了菜单的下拉.显示.隐藏的效果,不必再用样式表一点点地修改,省去了很多麻烦,那么jQuery ...

  5. JavaScript中的null与nudefined

    null和undefined 概述 null与undefined都可以表示"没有",含义非常相似.将一个变量赋值为undefined或null,老实说,语法效果几乎没区别. var ...

  6. js判断用户的浏览器设备是移动端还是pc端

    最近做的一个网站页面中需要根据用户的访问设备的不同来显示不同的页面样式,主要是判断移动设备还是电脑浏览器访问的. 下面给出js判断处理代码,以作参考. <script type="te ...

  7. Python: 关于nose

    1. 使用rednose增强输出 pip install rednose nosetests --rednose tests 2. 使用coverage pip install coverage no ...

  8. JAVA基础学习day14--集合一

    一.集合的出现 1.1.集合简述 面向对象语言对事物的体现都是以对象形式,为了方便对多个对象的操作,就对象对象进行存储,集合就是存仪储对象最常用的一种试 1.2.数组和集合都是容器 数组也存对象,存储 ...

  9. iOS 杂笔-20(UIView和CALayer的区别与联系)

    iOS 杂笔-20(UIView和CALayer的区别与联系) 每个 UIView 内部都有一个 CALayer 在背后提供内容的绘制和显示,并且 UIView 的尺寸样式都由内部的 Layer 所提 ...

  10. iOS-多线程--(pthread/NSThread/GCD/NSOperation)--总结

    零.线程的注意点(掌握) .不要同时开太多的线程(~3条线程即可,不要超过5条) .线程概念 > 主线程 : UI线程,显示.刷新UI界面,处理UI控件的事件 > 子线程 : 后台线程,异 ...