paper 22:kl-divergence(KL散度)实现代码
这个函数很重要:
function KL = kldiv(varValue,pVect1,pVect2,varargin)
%KLDIV Kullback-Leibler or Jensen-Shannon divergence between two distributions.
% KLDIV(X,P1,P2) returns the Kullback-Leibler divergence between two
% distributions specified over the M variable values in vector X. P1 is a
% length-M vector of probabilities representing distribution 1, and P2 is a
% length-M vector of probabilities representing distribution 2. Thus, the
% probability of value X(i) is P1(i) for distribution 1 and P2(i) for
% distribution 2. The Kullback-Leibler divergence is given by:
%
% KL(P1(x),P2(x)) = sum[P1(x).log(P1(x)/P2(x))]
%
% If X contains duplicate values, there will be an warning message, and these
% values will be treated as distinct values. (I.e., the actual values do
% not enter into the computation, but the probabilities for the two
% duplicate values will be considered as probabilities corresponding to
% two unique values.) The elements of probability vectors P1 and P2 must
% each sum to 1 +/- .00001.
%
% A "log of zero" warning will be thrown for zero-valued probabilities.
% Handle this however you wish. Adding 'eps' or some other small value
% to all probabilities seems reasonable. (Renormalize if necessary.)
%
% KLDIV(X,P1,P2,'sym') returns a symmetric variant of the Kullback-Leibler
% divergence, given by [KL(P1,P2)+KL(P2,P1)]/2. See Johnson and Sinanovic
% (2001).
%
% KLDIV(X,P1,P2,'js') returns the Jensen-Shannon divergence, given by
% [KL(P1,Q)+KL(P2,Q)]/2, where Q = (P1+P2)/2. See the Wikipedia article
% for "Kullback朙eibler divergence". This is equal to 1/2 the so-called
% "Jeffrey divergence." See Rubner et al. (2000).
%
% EXAMPLE: Let the event set and probability sets be as follow:
% X = [1 2 3 3 4]';
% P1 = ones(5,1)/5;
% P2 = [0 0 .5 .2 .3]' + eps;
%
% Note that the event set here has duplicate values (two 3's). These
% will be treated as DISTINCT events by KLDIV. If you want these to
% be treated as the SAME event, you will need to collapse their
% probabilities together before running KLDIV. One way to do this
% is to use UNIQUE to find the set of unique events, and then
% iterate over that set, summing probabilities for each instance of
% each unique event. Here, we just leave the duplicate values to be
% treated independently (the default):
% KL = kldiv(X,P1,P2);
% KL =
% 19.4899
%
% Note also that we avoided the log-of-zero warning by adding 'eps'
% to all probability values in P2. We didn't need to renormalize
% because we're still within the sum-to-one tolerance.
%
% REFERENCES:
% 1) Cover, T.M. and J.A. Thomas. "Elements of Information Theory," Wiley,
% 1991.
% 2) Johnson, D.H. and S. Sinanovic. "Symmetrizing the Kullback-Leibler
% distance." IEEE Transactions on Information Theory (Submitted).
% 3) Rubner, Y., Tomasi, C., and Guibas, L. J., 2000. "The Earth Mover's
% distance as a metric for image retrieval." International Journal of
% Computer Vision, 40(2): 99-121.
% 4) Kullback朙eibler divergence. Wikipedia, The Free Encyclopedia.
%
% See also: MUTUALINFO, ENTROPY
if ~isequal(unique(varValue),sort(varValue)),
warning('KLDIV:duplicates','X contains duplicate values. Treated as distinct values.')
end
if ~isequal(size(varValue),size(pVect1)) || ~isequal(size(varValue),size(pVect2)),
error('All inputs must have same dimension.')
end
% Check probabilities sum to 1:
if (abs(sum(pVect1) - 1) > .00001) || (abs(sum(pVect2) - 1) > .00001),
error('Probablities don''t sum to 1.')
end
if ~isempty(varargin),
switch varargin{1},
case 'js',
logQvect = log2((pVect2+pVect1)/2);
KL = .5 * (sum(pVect1.*(log2(pVect1)-logQvect)) + ...
sum(pVect2.*(log2(pVect2)-logQvect)));
case 'sym',
KL1 = sum(pVect1 .* (log2(pVect1)-log2(pVect2)));
KL2 = sum(pVect2 .* (log2(pVect2)-log2(pVect1)));
KL = (KL1+KL2)/2;
otherwise
error(['Last argument' ' "' varargin{1} '" ' 'not recognized.'])
end
else
KL = sum(pVect1 .* (log2(pVect1)-log2(pVect2)));
end
paper 22:kl-divergence(KL散度)实现代码的更多相关文章
- python 3计算KL散度(KL Divergence)
KL DivergenceKL( Kullback–Leibler) Divergence中文译作KL散度,从信息论角度来讲,这个指标就是信息增益(Information Gain)或相对熵(Rela ...
- paper 23 :Kullback–Leibler divergence KL散度(2)
Kullback–Leibler divergence KL散度 In probability theory and information theory, the Kullback–Leibler ...
- 熵(Entropy),交叉熵(Cross-Entropy),KL-松散度(KL Divergence)
1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练模型的时候就不停地调整参数使得我们预测出来的概率和真是的概率更加接近. 这篇文章我们关注在我们的模型假设这些类 ...
- [转]熵(Entropy),交叉熵(Cross-Entropy),KL-松散度(KL Divergence)
https://www.cnblogs.com/silent-stranger/p/7987708.html 1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练 ...
- [学习笔记] Uplift Decision Tree With KL Divergence
Uplift Decision Tree With KL Divergence Intro Uplift model 我没找到一个合适的翻译,这方法主要应用是,探究用户在给予一定激励之后的表现,也就是 ...
- KL divergence
Kullback-Leibler divergence 形式: 性质: 非负 P=Q时,D[P||Q]=0 不对称性:D(P||Q)≠D(Q||P) 自信息:符合分布 P 的某一事件 x 出现,传达这 ...
- KL与JS散度学习[转载]
转自:https://www.jianshu.com/p/43318a3dc715?from=timeline&isappinstalled=0 https://blog.csdn.net/e ...
- [Bayes] KL Divergence & Evidence Lower Bound
L lower是什么? L lower, 既然大于,那么多出来的这部分是什么?如下推导: 得出了KL的概念,同时也自然地引出了latent variable q.
- java 22 - 21 多线程之多线程的代码实现方式3
JDK5新增了一个Executors工厂类来产生线程池,有如下几个方法 A.public static ExecutorService newCachedThreadPool() B.public s ...
随机推荐
- C# IO操作,写入文本到txt文件.
/// <summary> /// 写入日志文件 /// </summary> /// <param name="input"></par ...
- Java HashMap、LinkedHashMap
如果需要使用的Map中的key无序,选择HashMap:如果要求key有序,则选择TreeMap. 但是选择TreeMap就会有性能问题,因为TreeMap的get操作的时间复杂度是O(log(n)) ...
- 实验 snort安装配置与规则编写
1 实验目的 在linux或windows任意一个平台下完成snort的安装,使snort工作在NIDS模式下,并编写符合相关情景要求的snort规则. 2 实验环境 物理机:windows 8.1 ...
- JS的基础类型与引用类型
两种类型: ECMAScript变量包含两种不同类型的值:基本类型值.引用类型值: 基本类型值:指的是保存在栈内存中的简单数据段: 引用类型值:指的是那些保存在堆内存中的对象,意思是,变量中保存的实际 ...
- asp.net MVC中如何用Membership类和自定义的数据库进行登录验证
asp.net MVC 内置的membershipProvider可以实现用户登陆验证,但是它用的是自动创建的数据库,所以你想用本地数据库数据去验证,是通过不了的. 如果我们想用自己的数据库的话,可以 ...
- 文明3地图之二-大n型地图
存档文件:http://files.cnblogs.com/files/xiandedanteng/civ3bigN20160214.rar 地图: 简介: 这份地图几乎没有岛屿,整块大陆都连在一起像 ...
- 深度实践KVM笔记
深度实践KVM笔记 libvirt(virt-install,API,服务,virsh)->qemu(qemu-kvm进程,qemu-img)->KVM虚拟机->kvm.ko 内核模 ...
- 第二篇 Replication:分发服务器的作用
本篇文章是SQL Server Replication系列的第二篇,详细内容请参考原文. 分发服务器是SQL Server复制的核心组件.分发服务器控制并执行数据从一个服务器移动到另一个服务器的进程. ...
- IDisplayTransformation
IDisplayTransformation Bounds Full extent in world coordinates. The Bounds property controls the ful ...
- 读取Excel文件的版本
读取xls文件和xlsx文件创建的版本号. 虽然xlsx声明的是向前兼容,但是不知道OleDb是不是也是这样,没有办法所以要读取文件版本,限定只能读取Excel2007保存的文件. using ICS ...