这一章想讲一下Spark的缓存是如何实现的。这个persist方法是在RDD里面的,所以我们直接打开RDD这个类。

  def persist(newLevel: StorageLevel): this.type = {
    // StorageLevel不能随意更改
    if (storageLevel != StorageLevel.NONE && newLevel != storageLevel) {
      throw new UnsupportedOperationException("Cannot change storage level of an RDD after it was already assigned a level")
    }
    sc.persistRDD(this)
    // Register the RDD with the ContextCleaner for automatic GC-based cleanup    // 注册清理方法
    sc.cleaner.foreach(_.registerRDDForCleanup(this))
    storageLevel = newLevel
    this
  }

它调用SparkContext去缓存这个RDD,追杀下去。

  private[spark] def persistRDD(rdd: RDD[_]) {
    persistentRdds(rdd.id) = rdd
  }

它居然是用一个HashMap来存的,具体看这个map的类型是TimeStampedWeakValueHashMap[Int, RDD[_]]类型。把存进去的值都隐式转换成WeakReference,然后加到一个内部的一个ConcurrentHashMap里面。这里貌似也没干啥,这是有个鸟蛋用。。大神莫喷,知道干啥用的人希望告诉我一下。

CacheManager

现在并没有保存,等到真正运行Task运行的时候才会去缓存起来。入口在Task的runTask方法里面,具体的我们可以看ResultTask,它调用了RDD的iterator方法。

  final def iterator(split: Partition, context: TaskContext): Iterator[T] = {
    if (storageLevel != StorageLevel.NONE) {
      SparkEnv.get.cacheManager.getOrCompute(this, split, context, storageLevel)
    } else {
      computeOrReadCheckpoint(split, context)
    }
  }

一旦设置了StorageLevel,就要从SparkEnv的cacheManager取数据。

  def getOrCompute[T](rdd: RDD[T], split: Partition, context: TaskContext, storageLevel: StorageLevel): Iterator[T] = {
    val key = RDDBlockId(rdd.id, split.index)
    blockManager.get(key) match {
      case Some(values) =>
        // 已经有了,直接返回就可以了
        new InterruptibleIterator(context, values.asInstanceOf[Iterator[T]])

      case None =>
        // loading包含这个key表示已经有人在加载了,等到loading被释放了,就可以去blockManager里面取到了
        loading.synchronized {
          if (loading.contains(key)) {
            while (loading.contains(key)) {
              try {
                loading.wait()
              } catch {
                case e: Exception =>
                  logWarning(s"Got an exception while waiting for another thread to load $key", e)
              }
            }
            // 别人成功拿到了,我们直接取结果就是了,如果别人取失败了,我们再来取一次
            blockManager.get(key) match {
              case Some(values) =>
                return new InterruptibleIterator(context, values.asInstanceOf[Iterator[T]])
              case None =>
                loading.add(key)
            }
          } else {
            loading.add(key)
          }
        }
        try {
          // 通过rdd自身的compute方法去计算得到结果,回去看看RDD那文章,自己看看源码就清楚了
          val computedValues = rdd.computeOrReadCheckpoint(split, context)

          // 如果是本地运行的,就没必要缓存了,直接返回即可
          if (context.runningLocally) {
            return computedValues
          }

          // 跟踪blocks的更新状态
          var updatedBlocks = Seq[(BlockId, BlockStatus)]()
          val returnValue: Iterator[T] = {
            if (storageLevel.useDisk && !storageLevel.useMemory) {
              /* 这是RDD采用DISK_ONLY的情况,直接扔给blockManager
               * 然后把结果直接返回,它不需要把结果一下子全部加载进内存
               * 这同样适用于MEMORY_ONLY_SER,但是我们需要在启用它之前确认blocks没被block store给丢弃 */
              updatedBlocks = blockManager.put(key, computedValues, storageLevel, tellMaster = true)
              blockManager.get(key) match {
                case Some(values) =>
                  values.asInstanceOf[Iterator[T]]
                case None =>
                  throw new Exception("Block manager failed to return persisted valued")
              }
            } else {
              // 先存到一个ArrayBuffer,然后一次返回,在blockManager里也存一份
              val elements = new ArrayBuffer[Any]
              elements ++= computedValues
              updatedBlocks = blockManager.put(key, elements, storageLevel, tellMaster = true)
              elements.iterator.asInstanceOf[Iterator[T]]
            }
          }

          // 更新task的监控参数
          val metrics = context.taskMetrics
          metrics.updatedBlocks = Some(updatedBlocks)

          new InterruptibleIterator(context, returnValue)

        } finally {
          // 改完了,释放锁
          loading.synchronized {
            loading.remove(key)
            loading.notifyAll()
          }
        }
    }
  }

1、如果blockManager当中有,直接从blockManager当中取。

2、如果blockManager没有,就先用RDD的compute函数得到出来一个Iterable接口。

3、如果StorageLevel是只保存在硬盘的话,就把值存在blockManager当中,然后从blockManager当中取出一个Iterable接口,这样的好处是不会一次把数据全部加载进内存。

4、如果StorageLevel是需要使用内存的情况,就把结果添加到一个ArrayBuffer当中一次返回,另外在blockManager存上一份,下次直接从blockManager取。

对StorageLevel说明一下吧,贴一下它的源码。

class StorageLevel private(
    private var useDisk_ : Boolean,
    private var useMemory_ : Boolean,
    private var useOffHeap_ : Boolean,
    private var deserialized_ : Boolean,
    private var replication_ : Int = 1)

  val NONE = new StorageLevel(false, false, false, false)
  val DISK_ONLY = new StorageLevel(true, false, false, false)
  val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
  val MEMORY_ONLY = new StorageLevel(false, true, false, true)
  val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
  val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
  val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
  val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
  val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
  val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
  val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
  val OFF_HEAP = new StorageLevel(false, false, true, false)

大家注意看它那几个参数,useDisk_、useMemory_、useOffHeap_、deserialized_、replication_ 在具体的类型的时候是传的什么值。

下面我们的目标要放到blockManager。

BlockManager

BlockManager这个类比较大,我们从两方面开始看吧,putBytes和get方法。先从putBytes说起,之前说过Task运行结束之后,结果超过10M的话,会用BlockManager缓存起来。

env.blockManager.putBytes(blockId, serializedDirectResult, StorageLevel.MEMORY_AND_DISK_SER)

putBytes内部又掉了另外一个方法doPut,方法很大呀,先折叠起来。

  private def doPut(
      blockId: BlockId,
      data: Values,
      level: StorageLevel,
      tellMaster: Boolean = true): Seq[(BlockId, BlockStatus)] = {// Return value
    val updatedBlocks = new ArrayBuffer[(BlockId, BlockStatus)]

    // 记录它的StorageLevel,以便我们可以在它加载进内存之后,可以按需写入硬盘。
  // 此外,在我们把调用BlockInfo的markReay方法之前,都没法通过get方法获得该部分内容
    val putBlockInfo = {
      val tinfo = new BlockInfo(level, tellMaster)
      // 如果不存在,就添加到blockInfo里面
      val oldBlockOpt = blockInfo.putIfAbsent(blockId, tinfo)
      if (oldBlockOpt.isDefined) {
        // 如果已经存在了,就不需要重复添加了
        if (oldBlockOpt.get.waitForReady()) {return updatedBlocks
        }
        // 存在于blockInfo当中->但是上一次保存失败了,拿出旧的信息,再试一遍
        oldBlockOpt.get
      } else {
        tinfo
      }
    }

    val startTimeMs = System.currentTimeMillis
    // 当我们需要存储数据,并且要复制数据到别的机器,我们需要访问它的值,但是因为我们的put操作会读取整个iterator,
    // 这就不会有任何的值留下。在我们保存序列化的数据的场景,我们可以记住这些bytes,但在其他场景,比如反序列化存储的
    // 时候,我们就必须依赖返回一个Iterator
    var valuesAfterPut: Iterator[Any] = null
    // Ditto for the bytes after the put
    var bytesAfterPut: ByteBuffer = null
    // Size of the block in bytes
    var size = 0L

    // 在保存数据之前,我们要实例化,在数据已经序列化并且准备好发送的情况下,这个过程是很快的
    val replicationFuture = if (data.isInstanceOf[ByteBufferValues] && level.replication > 1) {
      // duplicate并不是复制这些数据,只是做了一个包装
      val bufferView = data.asInstanceOf[ByteBufferValues].buffer.duplicate()
      Future {
        // 把block复制到别的机器上去
        replicate(blockId, bufferView, level)
      }
    } else {
      null
    }

    putBlockInfo.synchronized {

      var marked = false
      try {
        if (level.useMemory) {
          // 首先是保存到内存里面,尽管它也使用硬盘,等内存不够的时候,才会写入硬盘
          // 下面分了三种情况,但是Task的结果是ByteBufferValues这种情况,具体看putBytes方法
          val res = data match {
            case IteratorValues(iterator) =>
              memoryStore.putValues(blockId, iterator, level, true)
            case ArrayBufferValues(array) =>
              memoryStore.putValues(blockId, array, level, true)
            case ByteBufferValues(bytes) =>
              bytes.rewind()
              memoryStore.putBytes(blockId, bytes, level)
          }
          size = res.size
          // 这里写得那么恶心,是跟data的类型有关系的,data: Either[Iterator[_], ByteBuffer],Left是Iterator,Right是ByteBuffer
          res.data match {
            case Right(newBytes) => bytesAfterPut = newBytes
            case Left(newIterator) => valuesAfterPut = newIterator
          }
          // 把被置换到硬盘的blocks记录到updatedBlocks上
          res.droppedBlocks.foreach { block => updatedBlocks += block }
        } else if (level.useOffHeap) {
          // 保存到Tachyon上.
          val res = data match {
            case IteratorValues(iterator) =>
              tachyonStore.putValues(blockId, iterator, level, false)
            case ArrayBufferValues(array) =>
              tachyonStore.putValues(blockId, array, level, false)
            case ByteBufferValues(bytes) =>
              bytes.rewind()
              tachyonStore.putBytes(blockId, bytes, level)
          }
          size = res.size
          res.data match {
            case Right(newBytes) => bytesAfterPut = newBytes
            case _ =>
          }
        } else {
          // 直接保存到硬盘,不要复制到其它节点的就别返回数据了.
          val askForBytes = level.replication > 1
          val res = data match {
            case IteratorValues(iterator) =>
              diskStore.putValues(blockId, iterator, level, askForBytes)
            case ArrayBufferValues(array) =>
              diskStore.putValues(blockId, array, level, askForBytes)
            case ByteBufferValues(bytes) =>
              bytes.rewind()
              diskStore.putBytes(blockId, bytes, level)
          }
          size = res.size
          res.data match {
            case Right(newBytes) => bytesAfterPut = newBytes
            case _ =>
          }
        }
     // 通过blockId获得当前的block状态
        val putBlockStatus = getCurrentBlockStatus(blockId, putBlockInfo)
        if (putBlockStatus.storageLevel != StorageLevel.NONE) {
          // 成功了,把该block标记为ready,通知BlockManagerMaster
          marked = true
          putBlockInfo.markReady(size)
          if (tellMaster) {
            reportBlockStatus(blockId, putBlockInfo, putBlockStatus)
          }
          updatedBlocks += ((blockId, putBlockStatus))
        }
      } finally {
        // 如果没有标记成功,就把该block信息清除
       if (!marked) {
          blockInfo.remove(blockId)
          putBlockInfo.markFailure()
        }
      }
    }

    // 把数据发送到别的节点做备份
    if (level.replication > 1) {
      data match {
        case ByteBufferValues(bytes) => Await.ready(replicationFuture, Duration.Inf)
        case _ => {
          val remoteStartTime = System.currentTimeMillis
          // 把Iterator里面的数据序列化之后,发送到别的节点
          if (bytesAfterPut == null) {
            if (valuesAfterPut == null) {
              throw new SparkException("Underlying put returned neither an Iterator nor bytes! This shouldn't happen.")
            }
            bytesAfterPut = dataSerialize(blockId, valuesAfterPut)
          }
          replicate(blockId, bytesAfterPut, level)
        }
      }
    }
    // 销毁bytesAfterPut
    BlockManager.dispose(bytesAfterPut)
    updatedBlocks
  }

从上面的的来看:

1、存储的时候按照不同的存储级别分了3种情况来处理:存在内存当中(包括MEMORY字样的),存在tachyon上(OFF_HEAP),只存在硬盘上(DISK_ONLY)。

2、存储完成之后会根据存储级别决定是否发送到别的节点,在名字上最后带2字的都是这种,2表示一个block会在两个节点上保存。

3、存储完毕之后,会向BlockManagerMaster汇报block的情况。

4、这里面的序列化其实是先压缩后序列化,默认使用的是LZF压缩,可以通过spark.io.compression.codec设定为snappy或者lzo,序列化方式通过spark.serializer设置,默认是JavaSerializer。

接下来我们再看get的情况。

    val local = getLocal(blockId)
    if (local.isDefined) return local
    val remote = getRemote(blockId)
    if (remote.isDefined) return remote
    None

先从本地取,本地没有再去别的节点取,都没有,返回None。从本地取就不说了,怎么进怎么出。讲一下怎么从别的节点去,它们是一个什么样子的关系?

我们先看getRemote方法

  private def doGetRemote(blockId: BlockId, asValues: Boolean): Option[Any] = {
    val locations = Random.shuffle(master.getLocations(blockId))
    for (loc <- locations) {
      val data = BlockManagerWorker.syncGetBlock(GetBlock(blockId), ConnectionManagerId(loc.host, loc.port))
      if (data != null) {
        if (asValues) {
          return Some(dataDeserialize(blockId, data))
        } else {
          return Some(data)
        }
      }
    }
    None
  }

这个方法包括两个步骤:

1、用blockId通过master的getLocations方法找到它的位置。

2、通过BlockManagerWorker.syncGetBlock到指定的节点获取数据。

ok,下面就重点讲BlockManager和BlockManagerMaster之间的关系,以及BlockManager之间是如何相互传输数据。

BlockManager与BlockManagerMaster的关系

BlockManager我们使用的时候是从SparkEnv.get获得的,我们观察了一下SparkEnv,发现它包含了我们运行时候常用的那些东东。那它创建是怎么创建的呢,我们找到SparkEnv里面的create方法,右键FindUsages,就会找到两个地方调用了,一个是SparkContext,另一个是Executor。在SparkEnv的create方法里面会实例化一个BlockManager和BlockManagerMaster。这里我们需要注意看BlockManagerMaster的实例化方法,里面调用了registerOrLookup方法。

    def registerOrLookup(name: String, newActor: => Actor): ActorRef = {
      if (isDriver) {
        actorSystem.actorOf(Props(newActor), name = name)
      } else {
        val driverHost: String = conf.get("spark.driver.host", "localhost")
        val driverPort: Int = conf.getInt("spark.driver.port", 7077)
        Utils.checkHost(driverHost, "Expected hostname")
        val url = s"akka.tcp://spark@$driverHost:$driverPort/user/$name"
        val timeout = AkkaUtils.lookupTimeout(conf)
        Await.result(actorSystem.actorSelection(url).resolveOne(timeout), timeout)
      }
    }

所以从这里可以看出来,除了Driver之后的actor都是,都是持有的Driver的引用ActorRef。梳理一下,我们可以得出以下结论:

1、SparkContext持有一个BlockManager和BlockManagerMaster。

2、每一个Executor都持有一个BlockManager和BlockManagerMaster。

3、Executor和SparkContext的BlockManagerMaster通过BlockManagerMasterActor来通信。

接下来,我们看看BlockManagerMasterActor里的三组映射关系。

  // 1、BlockManagerId和BlockManagerInfo的映射关系
  private val blockManagerInfo = new mutable.HashMap[BlockManagerId, BlockManagerInfo]
  // 2、Executor ID 和 Block manager ID的映射关系
  private val blockManagerIdByExecutor = new mutable.HashMap[String, BlockManagerId]
  // 3、BlockId和保存它的BlockManagerId的映射关系
  private val blockLocations = new JHashMap[BlockId, mutable.HashSet[BlockManagerId]]

看到这三组关系,前面的getLocations方法不用看它的实现,我们都应该知道是怎么找了。

BlockManager相互传输数据

BlockManager之间发送数据和接受数据是通过BlockManagerWorker的syncPutBlock和syncGetBlock方法来实现。看BlockManagerWorker的注释,说是BlockManager的网络接口,采用的是事件驱动模型。

再仔细看这两个方法,它传输的数据包装成BlockMessage之后,通过ConnectionManager的sendMessageReliablySync方法来传输。

接下来的故事就是nio之间的发送和接收了,就简单说几点吧:

1、ConnectionManager内部实例化一个selectorThread线程来接收消息,具体请看run方法。

2、Connection发送数据的时候,是一次把消息队列的message全部发送,不是一个一个message发送,具体看SendConnection的write方法,与之对应的接收看ReceivingConnection的read方法。

3、read完了之后,调用回调函数ConnectionManager的receiveMessage方法,它又调用了handleMessage方法,handleMessage又调用了BlockManagerWorker的onBlockMessageReceive方法。传说中的事件驱动又出现了。

  def processBlockMessage(blockMessage: BlockMessage): Option[BlockMessage] = {
    blockMessage.getType match {
      case BlockMessage.TYPE_PUT_BLOCK => {
        val pB = PutBlock(blockMessage.getId, blockMessage.getData, blockMessage.getLevel)
        putBlock(pB.id, pB.data, pB.level)
        None
      }
      case BlockMessage.TYPE_GET_BLOCK => {
        val gB = new GetBlock(blockMessage.getId)
        val buffer = getBlock(gB.id)
        Some(BlockMessage.fromGotBlock(GotBlock(gB.id, buffer)))
      }
      case _ => None
    }
  }

根据BlockMessage的类型进行处理,put类型就保存数据,get类型就从本地把block读出来返回给它。

注:BlockManagerMasterActor是存在于BlockManagerMaster内部,画在外面只是因为它在通信的时候起了关键的作用的,Executor上持有的BlockManagerMasterActor均是Driver节点的Actor的引用。

广播变量

先回顾一下怎么使用广播变量:

scala> val broadcastVar = sc.broadcast(Array(, , ))
broadcastVar: spark.Broadcast[Array[Int]] = spark.Broadcast(b5c40191-a864-4c7d-b9bf-d87e1a4e787c)
scala> broadcastVar.value
res0: Array[Int] = Array(, , )

看了一下实现调用的是broadcastFactory的newBroadcast方法。

  def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean) = {
    broadcastFactory.newBroadcast[T](value_, isLocal, nextBroadcastId.getAndIncrement())
  }

默认的broadcastFactory是HttpBroadcastFactory,内部还有另外一个实现TorrentBroadcastFactory,先说HttpBroadcastFactory的newBroadcast方法。

它直接new了一个HttpBroadcast。

  HttpBroadcast.synchronized {
    SparkEnv.get.blockManager.putSingle(blockId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
  }

  if (!isLocal) {
    HttpBroadcast.write(id, value_)
  }

它的内部做了两个操作,把数据保存到driver端的BlockManager并且写入到硬盘。

TorrentBroadcast和HttpBroadcast都把数据存进了BlockManager做备份,但是TorrentBroadcast接着并没有把数据写入文件,而是采用了下面这种方式:

  def sendBroadcast() {
    // 把数据给切分了,每4M一个分片
    val tInfo = TorrentBroadcast.blockifyObject(value_)
    totalBlocks = tInfo.totalBlocks
    totalBytes = tInfo.totalBytes
    hasBlocks = tInfo.totalBlocks

    // 把分片的信息存到BlockManager,并通知Master
    val metaId = BroadcastBlockId(id, "meta")
    val metaInfo = TorrentInfo(null, totalBlocks, totalBytes)
    TorrentBroadcast.synchronized {
      SparkEnv.get.blockManager.putSingle(
        metaId, metaInfo, StorageLevel.MEMORY_AND_DISK, tellMaster = true)
    }

    // 遍历所有分片,存到BlockManager上面,并通知Master
     until totalBlocks) {
      val pieceId = BroadcastBlockId(id, "piece" + i)
      TorrentBroadcast.synchronized {
        SparkEnv.get.blockManager.putSingle(
          pieceId, tInfo.arrayOfBlocks(i), StorageLevel.MEMORY_AND_DISK, tellMaster = true)
      }
    }
  }

1、把数据序列化之后,每4M切分一下。

2、切分完了之后,把所有分片写入BlockManager。

但是找不到它们是怎么传播的??只是写入到BlockManager,但是tellMaster为false的话,就相当于存在本地了,别的BlockManager是没法获取到的。

这时候我注意到它内部有两个方法,readObject和writeObject,会不会和这两个方法有关呢?它们做的操作就是给value赋值。

为了检验这个想法,我亲自调试了一下,在反序列化任务的时候,readObject这个方法是被ObjectInputStream调用了。这块的知识大家可以百度下ObjectInputStream和ObjectOutputStream。

具体操作如下:

1、打开BroadcastSuite这个类,找到下面这段代码,图中的地方原来是512, 被我改成256了,之前一直运行不起来。

  test("Accessing TorrentBroadcast variables in a local cluster") {
    val numSlaves =
    sc = ]".format(numSlaves), "test", torrentConf)
    val list = List[Int](, , , )
    val broadcast = sc.broadcast(list)
    val results = sc.parallelize( to numSlaves).map(x => (x, broadcast.value.sum))
    assert(results.collect().toSet === ( to numSlaves).map(x => (x, )).toSet)
  }

2、找到TorrentBroadcast,在readObject方法上打上断点。

3、开始调试吧。

之前讲过,Task是被序列化之后包装在消息里面发送给Worker去运行的,所以在运行之前必须把Task进行反序列化,具体在TaskRunner的run方法里面:

task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader)

Ok,告诉大家入口了,剩下的大家去尝试吧。前面介绍了怎么切分的,到TorrentBroadcast的readObject里面就很容易理解了。

1、先通过MetaId从BlockManager里面取出来Meta信息。

2、通过Meta信息,构造分片id,去BlockManager里面取。

3、获得分片之后,把分片写入到本地的BlockManager当中。

4、全部取完之后,通过下面的方法反向赋值。

if (receiveBroadcast()) {
     value_ = TorrentBroadcast.unBlockifyObject[T](arrayOfBlocks, totalBytes, totalBlocks)
   SparkEnv.get.blockManager.putSingle(broadcastId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)}

5、把value_又顺手写入到BlockManager当中。(这里相当于写了两份进去,大家要注意了哈,内存消耗还是大大地。幸好是MEMORY_AND_DISK的)

这么做是有好处的,这是一种类似BT的做法,把数据切分成一小块一小块,容易传播,从不同的机器上获取一小块一小块的数据,最后组装成完整的。

把完整的value写入BlockManager是为了使用的时候方便,不需要再次组装。

相关参数

// BlockManager的最大内存
spark.storage.memoryFraction 默认值0.6// 文件保存的位置spark.local.dir 默认是系统变量java.io.tmpdir的值// tachyon保存的地址spark.tachyonStore.url 默认值tachyon://localhost:19998// 默认不启用netty来传输shuffle的数据spark.shuffle.use.netty 默认值是falsespark.shuffle.sender.port 默认值是0// 一个reduce抓取map中间结果的最大的同时抓取数量大小(to avoid over-allocating memory for receiving shuffle outputs)spark.reducer.maxMbInFlight 默认值是48*1024*1024// TorrentBroadcast切分数据块的分片大小spark.broadcast.blockSize 默认是4096// 广播变量的工厂类spark.broadcast.factory 默认是org.apache.spark.broadcast.HttpBroadcastFactory,也可以设置为org.apache.spark.broadcast.TorrentBroadcastFactory// 压缩格式spark.io.compression.codec 默认是LZF,可以设置成Snappy或者Lzo

岑玉海

转载请注明出处,谢谢!

Spark源码系列(五)分布式缓存的更多相关文章

  1. Spark源码系列:RDD repartition、coalesce 对比

    在上一篇文章中 Spark源码系列:DataFrame repartition.coalesce 对比 对DataFrame的repartition.coalesce进行了对比,在这篇文章中,将会对R ...

  2. Spark源码系列(一)spark-submit提交作业过程

    前言 折腾了很久,终于开始学习Spark的源码了,第一篇我打算讲一下Spark作业的提交过程. 这个是Spark的App运行图,它通过一个Driver来和集群通信,集群负责作业的分配.今天我要讲的是如 ...

  3. Spark源码系列:DataFrame repartition、coalesce 对比

    在Spark开发中,有时为了更好的效率,特别是涉及到关联操作的时候,对数据进行重新分区操作可以提高程序运行效率(很多时候效率的提升远远高于重新分区的消耗,所以进行重新分区还是很有价值的).在Spark ...

  4. 框架源码系列五:学习源码的方法(学习源码的目的、 学习源码的方法、Eclipse里面查看源码的常用快捷键和方法)

    一. 学习源码的目的 1. 为了扩展和调优:掌握框架的工作流程和原理 2. 为了提升自己的编程技能:学习他人的设计思想.编程技巧 二. 学习源码的方法 方法一: 1)掌握研究的对象和研究对象的核心概念 ...

  5. Spark源码系列(九)Spark SQL初体验之解析过程详解

    好久没更新博客了,之前学了一些R语言和机器学习的内容,做了一些笔记,之后也会放到博客上面来给大家共享.一个月前就打算更新Spark Sql的内容了,因为一些别的事情耽误了,今天就简单写点,Spark1 ...

  6. Spark源码系列(二)RDD详解

    1.什么是RDD? 上一章讲了Spark提交作业的过程,这一章我们要讲RDD.简单的讲,RDD就是Spark的input,知道input是啥吧,就是输入的数据. RDD的全名是Resilient Di ...

  7. Spark源码系列(八)Spark Streaming实例分析

    这一章要讲Spark Streaming,讲之前首先回顾下它的用法,具体用法请参照<Spark Streaming编程指南>. Example代码分析 val ssc = )); // 获 ...

  8. Spark源码系列(七)Spark on yarn具体实现

    本来不打算写的了,但是真的是闲来无事,整天看美剧也没啥意思.这一章打算讲一下Spark on yarn的实现,1.0.0里面已经是一个stable的版本了,可是1.0.1也出来了,离1.0.0发布才一 ...

  9. Spark源码系列(六)Shuffle的过程解析

    Spark大会上,所有的演讲嘉宾都认为shuffle是最影响性能的地方,但是又无可奈何.之前去百度面试hadoop的时候,也被问到了这个问题,直接回答了不知道. 这篇文章主要是沿着下面几个问题来开展: ...

随机推荐

  1. Jpeg2000 简介

    http://www.baike.com/wiki/Jpeg2000 总结Jpeg2000的六个方面:    ⑴ JPEG2000可以方便地实现渐进式传输,这是JPEG2000的重要特征之一.看到这种 ...

  2. 【WPF】提高InkAnalyer手写汉字识别的准确率

    最近项目中需要用到一个手写键盘,我们使用了WPF的InkCanvas+InkAnalyer来开发. 按照文档,一般的代码写法如下: var analyzer = new InkAnalyzer(); ...

  3. 理解assign,copy,retain变strong

    举个例子: NSString *houseOfMM = [[NSString alloc] initWithString:'装梵几的三室两厅']; 上面一段代码会执行以下两个动作:  1 在堆上分配一 ...

  4. [游戏模版20] Win32 物理引擎 加速运动

    >_<:Compared with previous talk,there will be taking about how to create an accelerated speed. ...

  5. Atitit.guice3 ioc 最佳实践 o9o

    Atitit.guice3 ioc  最佳实践 o9o 1. Guice的优点and跟个spring的比较 1 2. 两个部分:::绑定and注入@Inject 1 3. 绑定所有的方法总结 2 3. ...

  6. atitit.GMT UTC Catitit.GMT UTC CST DST CET 星期 月份 节日 时间的不同本质and起源

    atitit.GMT UTC Catitit.GMT UTC CST DST CET 星期 月份 节日 时间的不同本质and起源 1. GMT(Greenwich Mean Time)是格林尼治平时 ...

  7. 安装 Autoconf 2.69版

    发生错误configure.ac:8: error: Autoconf version 2.64 or higher is required 1.检查版本 [root@localhost Deskto ...

  8. 已知2个一维数组:a[]={3,4,5,6,7},b[]={1,2,3,4,5,6,7};把数组a与数组b 对应的元素乘积再赋值给数组b,如:b[2]=a[2]*b[2];最后输出数组b的元素。

    package hanqi; import java.util.Scanner; public class Test7 { public static void main(String[] args) ...

  9. 出现Bad command or the file name的原因

    出现Bad command or file name的原因 中文释义:错误的命令或文件名 . 错误原因:不能识别输入的命令 . 方法:检查所输入的指令是否正确,包括拼写和大小写等情况.

  10. Tomcat之web项目部署

    Tomcat一般用于部署JavaWeb项目. 遇到的问题 Linux操作系统中,在tomcat中部署项目时,一般只需要把项目war包:demo.war放到webapps下,然后启动tomcat即可.这 ...