Lucas的数论题解
Lucas的数论
reference
Pre
数论分块
默认向下取整时.
形如\(\sum\limits_{i=1}^n f\left( \frac{n}{i}\right)\)的求和,由于\(\frac{n}{r}\)的值只有\(\sqrt{n}\)个,可以直接数论分块上.
题解
记原式为\(S(n)\),有
\]
\]
记
\]
则
\]
那么
\]
可以直接上数论分块.
那么$$S(n)$$也可以数论分块球了> <...
然后\(\mu\)函数的前缀和...就这样:
然后发现也可以数论分块+记忆化搜索搞一搞.
然后就莫名其妙地过了> <
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <ext/rope>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/priority_queue.hpp>
#define fon(i,n) for(int i=0;i<n;++i)
#define fonx(i,f,n,s) for(int i=f;i<n;i+=s)
#define fonu(i,n) for(int i=1;i<n;i<<=1)
#define fong(i,s,n) for(int i=s;i<=n;++i)
#define debug true
#define pi 3.14159265358979323846264
#define mod 1000000007
typedef long long ll;
typedef unsigned long long ull;
struct __sieve{
int primes[1000000],primelen,spf[5000000+1],lm[5000000+1];
bool isk[5000000+1];
int lmer[5000000+1];
void operator()(){
lmer[1]=lm[1]=1;
fong(i,2,5000000){
if(!isk[i]) lm[i]=-1,primes[primelen++]=i;
fon(j,primelen){
int k=i*primes[j];
if(k>5000000) break;
isk[k]=1;
if(i%primes[j]) lm[k]=-lm[i]; else {
lm[k]=0;
break;
}
}
lmer[i]=lmer[i-1]+lm[i];
}
}
inline int operator[](int a){return lmer[a];}
} linear_sieve;
struct __hash{
#define hashmod 3001001
inline int hash(int n){
return ((n*405347)&1073741823)%hashmod;
}
int n[hashmod][3],h[hashmod],len;
inline int find(int N){
int p=hash(N);
int q=h[p];
while(p&&n[p][0]!=N) p=n[p][2];
return p?n[p][1]:-1;
}
inline void ins(int N,int p){
++len;
int q=hash(N);
n[len][0]=N,n[len][1]=p,n[len][2]=h[q],h[q]=len;
}
} hashmap;
int N,n;
int sumMiu(int a){
if(a<=5000000) return linear_sieve[a];
int res=hashmap.find(a);
if(~res) return res;
int t=1;
for (int l = 1, r = 2,n=a; r <= n; r ++){
r = std::min(n, n / (n / r));
int tmp = n / r;
t-=(r-l+mod)%mod*sumMiu(tmp)%mod;
t=(r<0)?t+mod:t;
l = r;
}
hashmap.ins(a,t);
return t;
}
int F(int n){
int ans = 0;
for (int l = 0, r = 1; r <= n; r ++){
r = std::min(n, n / (n / r));
int res = (n / r) % mod;
int tmp = (r - l + mod) % mod * res % mod;
ans += tmp;
if (ans >= mod) ans -= mod;
l = r;
}
return ans;
}
int main(){
#ifdef debug
freopen("mathP.in","r",stdin);
freopen("mathP.out","w",stdout);
#endif
scanf("%d",&n);
N=(int)pow((double)n,.5);
linear_sieve();
int ans=0;
for (int l = 0, r = 1; r <= n; r ++){
r = std::min(n, n / (n / r));
int res=F(n/r);
ans+=((ll)sumMiu(r)-sumMiu(l)+mod)%mod*res%mod*res%mod;
if(ans>=mod) ans-=mod;
l = r;
}
printf("%d\n",ans);
return 0;
}
Lucas的数论题解的更多相关文章
- bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演
4176: Lucas的数论 Time Limit: 30 Sec Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...
- 【BZOJ4176】Lucas的数论 莫比乌斯反演
[BZOJ4176]Lucas的数论 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)) ...
- Lucas的数论(math)
Lucas的数论(math) 题目描述 去年的今日,Lucas仍然是一个热爱数学的孩子.(现在已经变成业界毒瘤了> <) 在整理以前的试题时,他发现了这么一道题目:求\(\sum\limi ...
- BZOJ 4176: Lucas的数论 [杜教筛]
4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...
- bzoj 4176 Lucas的数论
bzoj 4176 Lucas的数论 和约数个数和那题差不多.只不过那个题是多组询问,这题只询问一次,并且 \(n\) 开到了 \(10^9\). \[ \begin{align*} \sum_{i= ...
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
- 【bzoj 4176】 Lucas的数论 莫比乌斯反演(杜教筛)
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其 ...
- 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
- BZOJ4176 Lucas的数论 【莫比乌斯反演 + 杜教筛】
题目 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i<=N", ...
随机推荐
- 深入理解C#泛型
前面两篇文章介绍了C#泛型的基本知识和特性,下面我们看看泛型是怎么工作的,了解一下泛型内部机制. 泛型内部机制 泛型拥有类型参数,通过类型参数可以提供"参数化"的类型,事实上,泛型 ...
- 第六章:javascript:字典
字典是一种以键-值对应形式存储的数据结构,就像电话薄里的名字和电话号码一样.只要找一个电话,查找名字,名字找到后,电话号码也就找到了.这里的键值是你用来查找的东西,值就是要查的到的结果. javasc ...
- 使用Ps制作透明ico
准备好图片 打开Ps新建透明图片->抠取图片->复制粘贴 保存为gif格式->使用ico在线转换即可
- 【bzoj1857】 Scoi2010—传送带
http://www.lydsy.com/JudgeOnline/problem.php?id=1857 (题目链接) 题意 给出两条线段AB和CD,在AB上的速度为P,在CD上的速度为Q,在AB,C ...
- on the way to Peking University
明天就要去北京参加北大夏令营了,希望这次能有所斩获! on the way to Peking University
- [NOIP2011] 提高组 洛谷P1311 选择客栈
题目描述 丽江河边有n 家很有特色的客栈,客栈按照其位置顺序从 1 到n 编号.每家客栈都按照某一种色调进行装饰(总共 k 种,用整数 0 ~ k-1 表示),且每家客栈都设有一家咖啡店,每家咖啡店均 ...
- Codeforces 46D Parking Lot
传送门 D. Parking Lot time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- 从js的repeat方法谈js字符串与数组的扩展方法
js将字符串重复N次的repeat方法的8个版本 /* *@desc: 将一个字符串重复自身N次 */ //版本1:利用空数组的join方法 function repeat(target, n) { ...
- 使用SubLineText3
一 Sublinetext3 1. Sublime Text3是一款跨平台的编辑器, 2. 安装网址: http://www.sublimetext.com/3 二 常用使用方法 1)打开控制台: V ...
- Weak is not weak,Strong is not strong
问题 今天做浏览器Controller的时候,碰到了一个奇怪的问题:每次pop浏览器controller之后,等几秒,总会碰到类似下面的错误(其中的xxxController就是浏览器或继承他的子类C ...