Geotransformation 地理变换

The Abridged Molodensky transformation is a three parameter transformation三参 that converts between two geographic coordinate systems (datums)两个基准面. The parameters are three translations in meters. The translation values are in XYZ space. This method is a quicker but less accurate version of the Molodensky method.

A CoordinateFrameTransformation布尔莎 is a seven parameter geographic (datum) transformation.七参 The seven parameters are three translations in meters三个平移量, three rotations in arc seconds三个旋转变量, and a scale factor缩放因子 in parts per million. The parameters refer to XYZ space. The conversion of features to and from XYZ space is done automatically as part as the method. If the input and output spheroids (ellipsoids) are different, that is also handled automatically. The PositionVectorTransformation is similar but uses a different convention when handling the rotation values. To convert between a coordinate frame and position vector methods, change the signs of the rotation values.

The GeocentricTranslation method is a three parameter transformation三参 that converts between two geographic coordinate systems (datums).两个不同的基准面 The parameters are three translations in meters where the translations occur in XYZ space. The conversion of features to and from XYZ space is done automatically as part as the method. If the input and output spheroids (ellipsoids) are different, that is also handled automatically.

The HARNTransformation coclass implements the HARN (HPGN) geographic (datum) transformation method. This is a grid-based method格网方法. The grids for forty-nine states (Alaska is the exception) and five territories are available.

See the IGridTransformation interface for the dataset name parameter.

The longitude rotation transformation converts data between two geographic coordinate system by applying a shift to the longitude values. Usually it's used to convert two geographic coordinate systems that are defined on different prime meridians, like Monte Mario (Rome) to Monte Mario (based on Greenwich).

A MolodenskyBadekasTransformation is a ten parameter geographic (datum) transformation十参数基准面转换. The ten parameters are three translations in meters, three rotations in arc seconds, a scale factor in parts per million, and the datum origin point in meters基准面原点. The parameters refer to XYZ space. The conversion of features to and from XYZ space is done automatically as part as the method. If the input and output spheroids (ellipsoids) are different, that is also handled automatically. The convention for the rotation values is the same as the CoordinateFrameTransformation.

The Molodensky transformation 莫洛金斯基模型is a three parameter transformation that converts between two geographic coordinate systems (datums).三参 The parameters are three translations in meters.(米为单位) The translation values are in XYZ space. This method is a slower but more accurate version 比慢但更精确of the Abridged Molodensky method.

The NADCONTransformation coclass implements the base NADCON geographic (datum) transformation method. This is a grid-based method格网. The grids for the contiguous United States, Alaska, Hawaii, and Puerto Rico/Virgin Islands are available.

See the IGridTransformation interface for the parameter, the dataset name.

The NTv2Transformation method converts between two geographic coordinate systems (datums) using a file用一个文件. The method was created by the Geodetics Division of Natural Resources Canada and has since been used by several other countries including Australia, New Zealand, and Germany. The file format is documented online and a script exists that can convert information stored in a shapefile to an NTv2-format file. See http://arcscripts.esri.com/details.asp?dbid=13654

A PositionVectorTransformation is a seven parameter geographic (datum) transformation七参数. The seven parameters are three translations in meters, three rotations in arc seconds, and a scale factor in parts per million. The parameters refer to XYZ space. The conversion of features to and from XYZ space is done automatically as part as the method. If the input and output spheroids (ellipsoids) are different, that is also handled automatically. The CoordinateFrameTransformation is similar but uses a different convention when handling the rotation values. To convert between a position vector and coordinate frame methods, change the signs of the rotation values.

七参数法:(包括布尔莎模型,一步法模型,海尔曼特等)

IGeometry2.ProjectEx Method

By default, ProjectEx will not densify geometries as they are projected. This can lead to the output geometries not reflecting the 'true' shape in the new coordinate system. A straight line in one coordinate system is not necessarily a straight line in a different coordinate system. Set the bAngularDensify parameterif you want to densify the geometries while they are projected.

[C#]

//This example demonstrates how to use IGeometry2::ProjectEx
    public void ProjectExExample()
    {
        //Create source spatial reference
        ISpatialReferenceFactory
spatialReferenceFactory = new SpatialReferenceEnvironmentClass();
        ISpatialReference spatialReference =
spatialReferenceFactory.CreateGeographicCoordinateSystem((int)esriSRGeoCSType.esriSRGeoCS_WGS1984);
       
spatialReference.SetFalseOriginAndUnits(-80.0000000232831, 39.9999999767169,
42949672.9);
        //Create envelope and define its
spatial reference
        IEnvelope envelope = new
EnvelopeClass();
       
envelope.PutCoords(-68.6076204314651, 49.6186709634653, -68.5531907607304,
49.6530789785679);
        envelope.SpatialReference = spatialReference;
        //Destination spatial reference
        IProjectedCoordinateSystem
projectedCoordinateSystem =
spatialReferenceFactory.CreateProjectedCoordinateSystem((int)esriSRProjCSType.esriSRProjCS_NAD1927UTM_19N);
        //Define the XYDomain equivalent to
SetFalseOriginAndUnits
       
projectedCoordinateSystem.SetDomain(500000, 600000, 5300000, 5600000);
        //Create a Geotransformation (Datum
transformation)
        IGeoTransformation geoTransformation
= spatialReferenceFactory.CreateGeoTransformation((int)esriSRGeoTransformationType.esriSRGeoTransformation_NAD1927_To_WGS1984_12)
as IGeoTransformation;

String report
= "Print envelope coordinates before projection:\n" +
        envelope.XMin + " , " +
envelope.YMin + " , " + envelope.XMax + " , " +
envelope.YMax + "\n\n\n";

//Project
envelope
        IGeometry2 geometry = envelope as
IGeometry2;
       
geometry.ProjectEx(projectedCoordinateSystem as ISpatialReference,
esriTransformDirection.esriTransformReverse, geoTransformation, false, 0, 0);

report =
report + "Print envelope coordinates after projection:\n" +
        envelope.XMin + " , " +
envelope.YMin + " , " + envelope.XMax + " , " +
envelope.YMax;
       
System.Windows.Forms.MessageBox.Show(report);
    }

About custom
geotransformations

[C#]

private void CustomGT()

{

// Initialize a new spatial reference environment.

// SpatialReferenceEnvironment is a singleton object and needs to use the
Activator class.

Type factoryType =
Type.GetTypeFromProgID(

"esriGeometry.SpatialReferenceEnvironment");

System.Object obj =
Activator.CreateInstance(factoryType);

ISpatialReferenceFactory2 pSRF =
obj as
ISpatialReferenceFactory2;

// Initialize and create the input and output coordinate systems.

IProjectedCoordinateSystem2
pPCSin = new

ESRI.ArcGIS.Geometry.ProjectedCoordinateSystemClass();

IProjectedCoordinateSystem2
pPCSout = new

ESRI.ArcGIS.Geometry.ProjectedCoordinateSystemClass();

pPCSin =
(IProjectedCoordinateSystem2)pSRF.CreateProjectedCoordinateSystem((int)

esriSRProjCSType.esriSRProjCS_Abidjan1987UTM_30N);

pPCSout =
(IProjectedCoordinateSystem2)pSRF.CreateProjectedCoordinateSystem((int)

esriSRProjCSType.esriSRProjCS_WGS1984UTM_30N);

// Retrieve the geographic coordinate systems from the two projected

// coordinate systems.

IGeographicCoordinateSystem2
pGCSto = (IGeographicCoordinateSystem2)

pPCSout.GeographicCoordinateSystem;

IGeographicCoordinateSystem2
pGCSfrom = (IGeographicCoordinateSystem2)

pPCSin.GeographicCoordinateSystem;

// Initialize and create an appropriate geographic transformation.

ICoordinateFrameTransformation
pCFT = new
CoordinateFrameTransformationClass();

pCFT.PutParameters(1.234,  - 2.345, 658.3, 4.3829,  - 2.48591, 2.18943, 2.48585);

pCFT.PutSpatialReferences(pGCSfrom, pGCSto);

pCFT.Name = "Custom GeoTran";

// The
SpatialReferenceEnvironment has a GeoTransformationOperationSet that you

// can use to maintain a list of active geographic transformations.

// Once you add a geographic transformation to the operation set, many
operations

// can access the transformations.

// Add the transformation to the operation set.

IGeoTransformationOperationSet
pGTSet = pSRF.GeoTransformationDefaults;

// Always add a geographic transformation in both directions.

pGTSet.Set(esriTransformDirection.esriTransformForward,
pCFT);

pGTSet.Set(esriTransformDirection.esriTransformReverse, pCFT);

}

How to use the
IGeoTransformationOperationSet methods

[C#]

public void Test()

{

//Create source spatial reference.

Type factoryType = Type.GetTypeFromProgID( "esriGeometry.SpatialReferenceEnvironment");

System.Object obj =
Activator.CreateInstance(factoryType);

ISpatialReferenceFactory3
spatialReferenceFactory = obj as ISpatialReferenceFactory3;

ISpatialReference spatialReference =

spatialReferenceFactory.CreateGeographicCoordinateSystem((int)

esriSRGeoCSType.esriSRGeoCS_WGS1984);

spatialReference.SetFalseOriginAndUnits( -
80.0000000232831, 39.9999999767169, 42949672.9);

//Create an envelope and define its
spatial reference.

IEnvelope envelope = new EnvelopeClass();

envelope.PutCoords( - 68.6076204314651,
49.6186709634653,  - 68.5531907607304, 49.6530789785679);

envelope.SpatialReference =
spatialReference;

//Destination spatial reference.

ISpatialReference projectedCoordinateSystem
= spatialReferenceFactory.CreateProjectedCoordinateSystem((int)

esriSRProjCSType.esriSRProjCS_NAD1927UTM_19N);

//Define the XYDomain equivalent to
SetFalseOriginAndUnits.

projectedCoordinateSystem.SetDomain(500000,
600000, 5300000, 5600000);

String report = "Print
envelope coordinates before projection:\n" +

envelope.XMin + " , " + envelope.YMin + " , " + envelope.XMax + " , " +

envelope.YMax + "\n\n\n";

//Project envelope.

IGeometry geometry = envelope as IGeometry2;

geometry.Project(projectedCoordinateSystem as ISpatialReference);

report = report + "Print
envelope coordinates after projection:\n" +

envelope.XMin + " , " + envelope.YMin + " , " + envelope.XMax + " , " +

envelope.YMax;

System.Windows.Forms.MessageBox.Show(report);

}

//This example
demonstrates how to use the IGeoTransformationOperationSet methods.

//Set up a few
GeoTransformations.

public void
ChangeCoordinateSystem1()

{

ISpatialReferenceFactory2
spatialReferenceFactory = new  SpatialReferenceEnvironmentClass();

IGeoTransformationOperationSet
geoTransformationOperationSet =   spatialReferenceFactory.GeoTransformationDefaults;

//NAD 1927 to WGS 1984 30.

IGeoTransformation geoTransformation =   spatialReferenceFactory.CreateGeoTransformation((int)

esriSRGeoTransformationType.esriSRGeoTransformation_NAD1927_To_WGS1984_12)as  IGeoTransformation;

geoTransformationOperationSet.Set(esriTransformDirection.esriTransformForward,    geoTransformation);

geoTransformationOperationSet.Set(esriTransformDirection.esriTransformReverse,   geoTransformation);

//Amersfoort to WGS 1984.

geoTransformation =
spatialReferenceFactory.CreateGeoTransformation(8012) as IGeoTransformation;

geoTransformationOperationSet.Set(esriTransformDirection.esriTransformForward, geoTransformation);

geoTransformationOperationSet.Set(esriTransformDirection.esriTransformReverse,  geoTransformation);

}

Projecting a
raster with a datum transformation

When projecting raster data, you can specify a
transformation if the spatial references of the input and output are based on
different datum. See the following code example:

public static void ProjectRasterWithDatumTransformation(IRasterDataset2

rasterDataset, ISpatialReference outSR,
esriSRGeoTransformation2Type geoTrans)

{

//This example shows how to specify a
datum transformation when projecting raster data.

//rasterDataset—Represents input of a
raster dataset that has a known spatial reference.

//outSR—Represents the spatial reference
of the output raster dataset.

//geoTrans—Represents the
geotransformation between the input and output spatial reference.

//Set output spatial reference.

IRaster raster =
rasterDataset.CreateFullRaster();

IRasterProps rasterProps =
(IRasterProps)raster;

rasterProps.SpatialReference = outSR;

//Specify the geotransformation.

ISpatialReferenceFactory2 srFactory = new SpatialReferenceEnvironmentClass();

IGeoTransformation geoTransformation =
(IGeoTransformation) srFactory.CreateGeoTransformation((int)geoTrans);

//Add to the geotransformation operation
set.

IGeoTransformationOperationSet operationSet
= new   GeoTransformationOperationSetClass();

operationSet.Set(esriTransformDirection.esriTransformForward,
geoTransformation);

operationSet.Set(esriTransformDirection.esriTransformReverse,
geoTransformation);

//Set the geotransformation on the raster.

IRaster2 raster2 = (IRaster2)raster;

raster2.GeoTransformations = operationSet;

//Save the result.

ISaveAs saveas = (ISaveAs)raster;

saveas.SaveAs(@"c:\temp\outputRaster.img", null, "IMAGINE
Image");

}

[ArcEngine]Geotransformation地理变换的更多相关文章

  1. ArcGIS案例学习笔记-中国2000坐标转换实例

    ArcGIS案例学习笔记-中国2000坐标转换实例 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 目的:西安1980.中国2000.WGS84(GPS)等任意坐标系 ...

  2. ArcGIS进行自定义投影转换(重投影)

    这里记录一下使用自定义七参数进行投影转换的过程. 1.主动创建自定义地理(坐标)变换 首先在系统工具箱里面选择创建自定义地理(坐标)变换 在弹出的窗口中输入相关参数即可. 转换方法选择COORDINA ...

  3. WGS84转大地2000

    1.创建自定义地理(坐标)变换: 2.选择源坐标系和目标坐标系: 3.自定义地理转换方法,选择COORDINATE_FRAME; 4.选择投影工具: 5.在地理变换处选择刚才自定义变换.

  4. 在ArcGIS Desktop中进行三参数或七参数精确投影转换

    转自 在ArcGIS Desktop中进行三参数或七参数精确投影转换     ArcGIS中定义的投影转换方法,在对数据的空间信息要求较高的工程中往往不能适用,有比较明显的偏差.在项目的前期数据准备工 ...

  5. (转)ARCGIS中坐标转换及地理坐标、投影坐标的定义

    原文地址:http://blog.sina.com.cn/s/blog_663d9a1f01017cyz.html 1.动态投影(ArcMap) 所谓动态投影指,ArcMap中的Data 的空间参考或 ...

  6. Python 利用GDAL对图像进行几何校正

    原文链接:https://blog.csdn.net/qq_27045589/article/details/81062586 一.几何校正方法 图像校正本质是建立一种从原始图像行列号到某种投影的数学 ...

  7. arcgis中栅格矢量计算技巧收藏

    ​ ​编辑 一.计算面积 ( 可以帮我们计算小班面积 )添加 AREA 字段,然后右键点击字段列,然后点击 CALCULATE VALUES; ---> 选择 ADVANCED -->把下 ...

  8. Hilbert-Huang Transform(希尔伯特-黄变换)

    在我们正式开始讲解Hilbert-Huang Transform之前,不妨先来了解一下这一伟大算法的两位发明人和这一算法的应用领域 Section I 人物简介 希尔伯特:公认的数学界“无冕之王”,1 ...

  9. Android百度地图开发02之添加覆盖物 + 地理编码和反地理编码

    下面来看一下地图上覆盖物的添加,以及地理编码和反地理编码. 添加覆盖物 在地图上添加覆盖物,一般需要以下几个步骤: 1. 定义坐标点,有可能是一个,有可能是多个(比如:多边形覆盖物). 2. 构造Ov ...

随机推荐

  1. Foreach 与 Foreach-Object 的区别

    下面两个实例可以看出:   Get-ADGroupMember -Identity "CN=gAPCHN-HGZ-IE10-Users,OU=Groups,OU=Hangzhou - Chi ...

  2. 【液晶模块系列基础视频】4.1.X-GUI图形界面库-画线画圆等函数简介

    [液晶模块系列基础视频]4.1.X-GUI图形界面库-画线画圆等函数简介 ============================== 技术论坛:http://www.eeschool.org 博客地 ...

  3. 【新产品发布】【GK101 10MHz任意波发生器】

    简介: GK101 10MHz掌上任意波形发生器基于多项先进技术,在较小的体积上实现了普通台式仪器才具有的功能.仪器仅手掌大小,实现了80M采样率.10MHz最大频率.10Vpp最高幅度的输出. 仪器 ...

  4. Solr学习笔记之2、集成IK中文分词器

    Solr学习笔记之2.集成IK中文分词器 一.下载IK中文分词器 IK中文分词器 此文IK版本:IK Analyer 2012-FF hotfix 1 完整分发包 二.在Solr中集成IK中文分词器 ...

  5. [IT学习]PowerBi 入门

    从哪里开始呢?注册一个账号,从PowerBi的help开始就行了.Get Started会带领你从get data讲起,建立dataset,建立report,一直到dashboard创建. 下面这个链 ...

  6. jQuery 图片剪裁插件使用之 imgAreaSelect

    插件主页:http://odyniec.net/projects/imgareaselect/ 官方网站上说明支持的浏览器:The plugin works in all major browsers ...

  7. JavaScript 数组详解(转)

    在程序语言中数组的重要性不言而喻,JavaScript中数组也是最常使用的对象之一,数组是值的有序集合,由于弱类型的原因,JavaScript中数组十分灵活.强大,不像是Java等强类型高级语言数组只 ...

  8. 树莓派系统安装、HDMI显示

    树莓派上可以安装多种操作系统,我们采用的是官方的基于debian的raspbian.系统安装方式见 安装完系统由于我使用的是7寸的HDMI屏,装完系统如果配置不该的话会导致右边有一部分无法显示,所以在 ...

  9. php-fpm

    install php-fpm # Ubuntu sudo apt-get install python-software-properties; sudo add-apt-repository pp ...

  10. Swapping

    COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION Referring back to Fig ...