CodeForces 359D (数论+二分+ST算法)
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=47319
题目大意:给定一个序列,要求确定一个子序列,①使得该子序列中所有值都能被其中一个值整除,②且子序列范围尽可能大(r-l尽可能大)。
解题思路:
对于要求1,不难发现只有min(L,R)=gcd(L,R)时才行。其中gcd是L,R范围内的最大公约数,min是L,R范围内的最小值。
对于要求2,传统思路是r-l从大到小枚举,每次确定一个(L,R)范围,进行判断,直到可行。复杂度O(n^2)铁定TLE。
由于r-l的值是有序的,固采用二分。先枚举r-l的中间值,如果符合要求,则向右考虑,看看有没有更大的。否则向左。
当然这题的难度不止于此,尽管采用二分,但是光是枚举复杂度就有O(nlogn)了,再加上查询orz。
最初我使用的是线段树完成RMQ、以及GCD的Query , 复杂度O(n*logn*logn), CF跑到Test10就TLE了。
看了题解才发现要使用ST算法在O(1)的时间内完成RMQ和GCD。也是第一次碰到ST算法,看见刘汝佳的炒鸡简洁ST,给跪了。
#include "cstdio"
#include "iostream"
#include "vector"
#include "algorithm"
#include "math.h"
#include "cstring"
using namespace std;
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define maxn 3*100005
#define maxp 20
template <class T>
inline bool read(T &ret)
{
char c;
int sgn;
if(c=getchar(),c==EOF) return ; //EOF
while(c!='-'&&(c<''||c>'')) c=getchar();
sgn=(c=='-')?-:;
ret=(c=='-')?:(c-'');
while(c=getchar(),c>=''&&c<='') ret=ret*+(c-'');
ret*=sgn;
return ;
}
int gcd(int a,int b) {if(b!=) return gcd(b,a%b);else return a;}
int RMQ[maxn][maxp],GCD[maxn][maxp],val[maxn],n,cnt,range;
vector<int> ans;
void ST()
{
for(int i=;i<=n;i++) RMQ[i][]=GCD[i][]=val[i];
for(int j=;(<<j)<=n;j++)
for(int i=;i+(<<j)-<=n;i++)
{
RMQ[i][j]=min(RMQ[i][j-],RMQ[i+(<<(j-))][j-]);
GCD[i][j]=gcd(GCD[i][j-],GCD[i+(<<(j-))][j-]);
}
}
bool Query(int L,int R)
{
int k=;
while((<<(k+))<=R-L+) k++;
int a=min(RMQ[L][k],RMQ[R-(<<k)+][k]);
int b=gcd(GCD[L][k],GCD[R-(<<k)+][k]);
if(a==b) return true;
else return false;
}
bool judge(int v) //枚举r-l
{
int cc=;
vector<int> tt;
for(int i=; v+i<=n; i++)
{
if(Query(i,i+v)) //L=i,R=i+v;
{
cc++;
tt.push_back(i);
}
}
if(cc>)
{
ans=tt;
cnt=cc;
range=v;
return true;
}
return false;
}
int main()
{
memset(RMQ,,sizeof(RMQ));
memset(GCD,,sizeof(GCD));
read(n);
for(int i=; i<=n; i++)
read(val[i]);
ST();
int l=,r=n-,mid;
while(l<=r) //二分
{
mid=(l+r)>>;
if(judge(mid)) l=mid+;
else r=mid-;
}
printf("%d %d\n",cnt,range);
for(int i=;i<ans.size();i++) {if(i>) printf(" ");printf("%d",ans[i]);};
printf("\n");
}
| 2808371 | neopenx | CodeForces 359D | Accepted | 51924 KB | 358 ms | GNU C++ 4.6 | 1981 B | 2014-10-03 15:00:32 |
CodeForces 359D (数论+二分+ST算法)的更多相关文章
- codeforces 359D 二分答案+RMQ
上学期刷过裸的RMQ模板题,不过那时候一直不理解>_< 其实RMQ很简单: 设f[i][j]表示从i开始的,长度为2^j的一段元素中的最小值or最大值 那么f[i][j]=min/max{ ...
- HDU 5289 Assignment (ST算法区间最值+二分)
题目链接:pid=5289">http://acm.hdu.edu.cn/showproblem.php?pid=5289 题面: Assignment Time Limit: 400 ...
- 【原创】RMQ - ST算法详解
ST算法: ID数组下标: 1 2 3 4 5 6 7 8 9 ID数组元素: 5 7 3 1 4 8 2 9 8 1.ST算法作 ...
- hdu5289 Assignment (区间查询最大值最小值,st算法...)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5289 题意:给定长度为n的序列a和一个整数K,找出最大值和最小值的差值小于K的区间.输出满足条件的区间的个 ...
- AcWing ST算法(区间求最值)打卡
一,介绍 ST算法是一个用倍增来求区间最值的算法,倍增是一个与二分类似的思想的一个东西,倍增简而言之也就是区间长度按1,2,4,8..... 我们先用nlog(n)的复杂度打出一个最大值表,后面我们可 ...
- Java实现的二分查找算法
二分查找又称折半查找,它是一种效率较高的查找方法. 折半查找的算法思想是将数列按有序化(递增或递减)排列,查找过程中采用跳跃式方式查找,即先以有序数列的中点位置为比较对象,如果要找的元素值小 于该中点 ...
- c#-二分查找-算法
折半搜索,也称二分查找算法.二分搜索,是一种在有序数组中查找某一特定元素的搜索算法. A 搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束: B 如果某一特定元素大于或者小 ...
- ST算法
作用:ST算法是用来求解给定区间RMQ的最值,本文以最小值为例 举例: 给出一数组A[0~5] = {5,4,6,10,1,12},则区间[2,5]之间的最值为1. 方法:ST算法分成两部分:离线预处 ...
- 求解区间最值 - RMQ - ST 算法介绍
解析 ST 算法是 RMQ(Range Minimum/Maximum Query)中一个很经典的算法,它天生用来求得一个区间的最值,但却不能维护最值,也就是说,过程中不能改变区间中的某个元素的值.O ...
随机推荐
- error: library dfftpack has Fortran sources but no Fortran compiler found解决方法
用pip install scipy 时提示 error: library dfftpack has Fortran sources but no Fortran compiler found 解决方 ...
- (转载)【Android】ViewGroup全面分析
转载自:http://www.cnblogs.com/lqminn/archive/2013/01/23/2866543.html 一个Viewgroup基本的继承类格式如下: import andr ...
- WCDMA是什么意思?CDMA是什么意思?GSM是什么意思
有些朋友在购买3G智能手机的时候会遇到这样的困惑,为什么相同的手机会有不同手机网络制式之分呢?有的支持WCDMA/GSM,有的支持CDMA/GSM,到底自己应该选购哪一种手机好呢?WCDMA是什么意思 ...
- 40.扑克牌的顺子[Continuous cards]
[题目] 从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的.2-10为数字本身,A为1,J为11,Q为12,K为13,而大小王可以看成任意数字. [分析] 这题目很有意思,是一个典型 ...
- linux自定义脚本添加到rc.local脚本无法正常运行的问题
为了能科学地上网,你懂的.其中需要将服务端做成开机启动.然而脚本在secure crt下能正常运行,添加到/etc/rc.local下却无法正常启动服务.用ps查找了下,脚本是运行了,但服务没起来.于 ...
- msysgit ls 中文显示
2013年10月17日 14:54:15 安装了新版的msysgit后,在其自带的 git bash 命令行下就可以输入中文汉字了 但是创建了中文名字命名的文件后,再用 ls 命令查询时会出现乱码的情 ...
- 转mysql复制主从集群搭建
最近搭了个主从复制,中间出了点小问题,排查搞定,记录下来 1环境:虚拟机:OS:centos6.5Linux host2 2.6.32-431.el6.x86_64 #1 SMP Fri Nov 22 ...
- Js数组里删除指定的元素(不是指定的位置)
转载自:http://my.oschina.net/zh119893/blog/265964 之前一直是做后端的,从来也没有写过js,但是却一直想学学,也只是基于兴趣而已!现在到了这个公司,确实大量的 ...
- mybatis中的oracle和mysql分页
这段时间一直在用mybatis+spring+springMVC的框架,总结点东西吧. mybatis的oracle分页写法: <?xml version="1.0" enc ...
- Android procrank , showmap 内存分析
(一)DDMS 的Heap Dump 1) Data Object:java object. 2) Class Object:object of type Class, e.g. what you'd ...