看上去不错的网站:http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.html

SciPy Cookbookhttp://scipy-cookbook.readthedocs.io/items/KalmanFiltering.html


良心视频:卡尔曼滤波器的原理以及在matlab中的实现

讲解思路貌似是在已知迭代结果的基础上做讲解,不是很透彻。

1. 用矩阵表示

2. 本质就是:二维高斯的协方差与sampling效果

3. 不确定性在状态之间的传递

4. 矩阵表示观察数据

5. Kalman系数

6. 噪声协方差矩阵的更新

7. Matlab实现

思考: 

与数学领域 openBUGS 的估参的关系是什么?[Bayes] openBUGS: this is not the annoying bugs in programming

一个是对逐渐增多数据的实时预测;一个是对总体数据的回归拟合。

代码示例:纯python代码

# Kalman filter example demo in Python

# A Python implementation of the example given in pages 11-15 of "An
# Introduction to the Kalman Filter" by Greg Welch and Gary Bishop,
# University of North Carolina at Chapel Hill, Department of Computer
# Science, TR 95-041,
# http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html # by Andrew D. Straw import numpy as np
import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (10, 8) # intial parameters
n_iter = 50
sz = (n_iter,) # size of array
x = -0.37727 # truth value (typo in example at top of p. 13 calls this z)
z = np.random.normal(x,0.1,size=sz) # observations (normal about x, sigma=0.1)
# 已获得一组随机数 Q = 1e-5 # process variance # allocate space for arrays
xhat =np.zeros(sz) # a posteri estimate of x
P =np.zeros(sz) # a posteri error estimate
xhatminus =np.zeros(sz) # a priori estimate of x
Pminus =np.zeros(sz) # a priori error estimate
K =np.zeros(sz) # gain or blending factor R = 0.1**2 # estimate of measurement variance, change to see effect # intial guesses
xhat[0] = 0.0
P[0] = 1.0

# 开始迭代
for k in range(1, n_iter):
# time update
xhatminus[k] = xhat[k-1]
Pminus[k] = P[k-1]+Q # measurement update
K[k] = Pminus[k]/( Pminus[k]+R )
xhat[k] = xhatminus[k]+K[k]*(z[k]-xhatminus[k])
P[k] = (1-K[k])*Pminus[k] plt.figure()
plt.plot(z,'k+',label='noisy measurements')
plt.plot(xhat,'b-',label='a posteri estimate')
plt.axhline(x,color='g',label='truth value')
plt.legend()
plt.title('Estimate vs. iteration step', fontweight='bold')
plt.xlabel('Iteration')
plt.ylabel('Voltage') plt.figure()
valid_iter = range(1,n_iter) # Pminus not valid at step 0
plt.plot(valid_iter,Pminus[valid_iter],label='a priori error estimate')
plt.title('Estimated $\it{\mathbf{a \ priori}}$ error vs. iteration step', fontweight='bold')
plt.xlabel('Iteration')
plt.ylabel('$(Voltage)^2$')
plt.setp(plt.gca(),'ylim',[0,.01])
plt.show()

Result: 

Goto: [OpenCV] Samples 14: kalman filter

其实,真正的Kalman Filter用得是如下理论,上述例子只是教小学生的入门读物。

Goto: https://www.youtube.com/watch?v=UVNeulkWWUM by XU Yida

关键需要理解: http://www.cnblogs.com/rubbninja/p/6220284.html

【重点】证明过程的理解关键是:

因为是线性滤波器,本身又具备一个alpha迭代的过程,那么先找出joint distribution,

然后,根据高斯的性质直接得出条件概率,即是Update Rule,这样正好对应于滤波器的alpha迭代过程的形式。

这个条件概率就是关于xt的,也就是最新的状态的概率分布,那么期望也就是miu,就是最新的xt

大概就是这么个思路,笔记在本本上,具体请看视频。符号比较多,但大体就是如上脉络。

[Math] Hidden Markov Model的更多相关文章

  1. [综]隐马尔可夫模型Hidden Markov Model (HMM)

    http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更 ...

  2. 隐马尔可夫模型(Hidden Markov Model,HMM)

    介绍 崔晓源 翻译 我们通常都习惯寻找一个事物在一段时间里的变化规律.在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等.一个最适用的例子就是天气的预测. 首 ...

  3. 理论沉淀:隐马尔可夫模型(Hidden Markov Model, HMM)

    理论沉淀:隐马尔可夫模型(Hidden Markov Model, HMM) 参考链接:http://www.zhihu.com/question/20962240 参考链接:http://blog. ...

  4. Hidden Markov Model

    Markov Chain 马尔科夫链(Markov chain)是一个具有马氏性的随机过程,其时间和状态参数都是离散的.马尔科夫链可用于描述系统在状态空间中的各种状态之间的转移情况,其中下一个状态仅依 ...

  5. NLP —— 图模型(一)隐马尔可夫模型(Hidden Markov model,HMM)

    本文简单整理了以下内容: (一)贝叶斯网(Bayesian networks,有向图模型)简单回顾 (二)隐马尔可夫模型(Hidden Markov model,HMM) 写着写着还是写成了很规整的样 ...

  6. 隐马尔可夫模型(Hidden Markov Model)

    隐马尔可夫模型(Hidden Markov Model) 隐马尔可夫模型(Hidden Markov Model, HMM)是一个重要的机器学习模型.直观地说,它可以解决一类这样的问题:有某样事物存在 ...

  7. Speech Recognition Java Code - HMM VQ MFCC ( Hidden markov model, Vector Quantization and Mel Filter Cepstral Coefficient)

    Hi everyone,I have shared speech recognition code inhttps://github.com/gtiwari333/speech-recognition ...

  8. 隐马尔科夫模型 HMM(Hidden Markov Model)

    本科阶段学了三四遍的HMM,机器学习课,自然语言处理课,中文信息处理课:如今学研究生的自然语言处理,又碰见了这个老熟人: 虽多次碰到,但总觉得一知半解,对其了解不够全面,借着这次的机会,我想要直接搞定 ...

  9. 隐马尔科夫模型(hidden Markov Model)

    万事开头难啊,刚开头确实不知道该怎么写才能比较有水平,这篇博客可能会比较长,隐马尔科夫模型将会从以下几个方面进行叙述:1 隐马尔科夫模型的概率计算法  2 隐马尔科夫模型的学习算法 3 隐马尔科夫模型 ...

随机推荐

  1. 携程Android App插件化和动态加载实践

    携程Android App的插件化和动态加载框架已上线半年,经历了初期的探索和持续的打磨优化,新框架和工程配置经受住了生产实践的考验.本文将详细介绍Android平台插件式开发和动态加载技术的原理和实 ...

  2. Asp.Net正在中止线程引发的问题

    背景: Asp.Net做的一个同步程序,同步的方法是通过JQuery的Ajax调用,同步过程大概要执行20多分钟,程序部署到服务器后执行一段时间后就弹出执行失败的对话框,日志记录的错误信息是“正在中止 ...

  3. 小白学数据分析----->ARPDAU的价值

    最近盛大刚刚发布了财报,有人给我打电话问什么是ARPDAU?ARPDAU能够起到什么作用?本文就这个问题给大家解析一下ARPDAU.在讲ARPDAU之前,有两个概念大家应该很清楚,一个是ARPU,另一 ...

  4. Linux 下安装Samba 文件共享服务器

    samba文件共享服务可以让linux和linux系统.linux和windows系统之间共享文件 服务查询 默认情况下,Linux系统在默认安装中已经安装了Samba服务包的一部分,为了对整个过程有 ...

  5. 修改oracle内存占用

    修改oracle内存占用   ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 # su oracle      $cd $ORACLE_HOM ...

  6. windows 2012 试用180天

    windows server 2012 官方下载,可以使用180天, 快到期的时候执行以下命令 slmgr.vbs -rearm

  7. Meaningful Use 中与HL7相关的消息及医疗文档

    汇总 HL7 消息 入出转消息 ADT A01,A03,A04,A08 免疫消息 VXU V04 电子处方消息 NEWRX Message v8.1 EDIFACT, v8.1 XML,  v10.6 ...

  8. RDD分区2GB限制

    本文目的   最近使用spark处理较大的数据时,遇到了分区2G限制的问题(ken).找到了解决方法,并且在网上收集了一些资料,记录在这里,作为备忘.   问题现象   遇到这个问题时,spark日志 ...

  9. 关于VS2010出现“此方法显式使用的 CAS 策略已被 .NET Framework 弃用... ...请使用 NetFx40_LegacySecurityPolicy 配置开关”解决办法

    有时候VS会出现“此方法显式使用的 CAS 策略已被 .NET Framework 弃用.若要出于兼容性原因而启用 CAS 策略,请使用 NetFx40_LegacySecurityPolicy 配置 ...

  10. SQLServer2008新建链接服务器for Oracle

    SQLServer2008新建链接服务器for Oracle   最近要在SQLServer2008中使用Oracle 10g的一个视图,通过建立链接服务器即可在SQLServer中使用Oracle提 ...