6073 Math Magic
Yesterday, my teacher taught us about math: +, -, *, /, GCD, LCM... As you know, LCM (Least
common multiple) of two positive numbers can be solved easily because of

a ∗ b = GCD(a, b) ∗ LCM(a, b)

In class, I raised a new idea: ”how to calculate the LCM of K numbers”. It’s also an easy problem
indeed, which only cost me 1 minute to solve it. I raised my hand and told teacher about my outstanding
algorithm. Teacher just smiled and smiled ...
After class, my teacher gave me a new problem and he wanted me solve it in 1 minute, too. If we
know three parameters N, M, K, and two equations:

1. SUM(A1, A2, . . . , Ai, Ai+1, . . . , AK) = N
          2. LCM(A1, A2, . . . , Ai, Ai+1, . . . , AK) = M

Can you calculate how many kinds of solutions are there for Ai (Ai are all positive numbers). I
began to roll cold sweat but teacher just smiled and smiled.
Can you solve this problem in 1 minute?
Input
  There are multiple test cases.
  Each test case contains three integers N, M, K. (1 ≤ N, M ≤ 1, 000, 1 ≤ K ≤ 100)
Output
  For each test case, output an integer indicating the number of solution modulo 1,000,000,007(1e9 + 7).
  You can get more details in the sample and hint below.
Hint:
  The first test case: the only solution is (2, 2).
  The second test case: the solution are (1, 2) and (2, 1).

Sample Input
4 2 2
3 2 2

Sample Output
1
2

 //今天算是长见识了,纠结,看了大神的代码,才知道用dp
//dp[k][n][m]表示由k个数组成的和为n,最小公倍数为m的情况总数 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = ;
const int mod = ;
int n, m, k;
int lcm[maxn][maxn];
int dp[][maxn][maxn];
int fact[maxn], cnt; int GCD(int a, int b)
{
return b==?a:GCD(b, a%b);
} int LCM(int a, int b)
{
return a / GCD(a,b) * b;
} void init()
{
for(int i = ; i <=; i++)
for(int j = ; j<=i; j++)
lcm[j][i] = lcm[i][j] = LCM(i, j);
} void solve()
{
cnt = ;
for(int i = ; i<=m; i++)
if(m%i==) fact[cnt++] = i; int now = ;
memset(dp[now], , sizeof(dp[now]));
for(int i = ; i<cnt; i++)
dp[now][fact[i]][fact[i]] = ; for(int i = ; i<k; i++)
{
now ^= ;
for(int p=; p<=n; p++)
for(int q=; q<cnt; q++)
{
dp[now][p][fact[q]] = ;
} for(int p=; p<=n; p++)
{
for(int q=; q<cnt; q++)
{
if(dp[now^][p][fact[q]]==) continue;
for(int j=; j<cnt; j++)
{
int now_sum = p + fact[j];
if(now_sum>n) continue;
int now_lcm = lcm[fact[q]][fact[j]];
dp[now][now_sum][now_lcm] += dp[now^][p][fact[q]];//
dp[now][now_sum][now_lcm] %= mod;//
}
}
}
}
printf("%d\n",dp[now][n][m]);
} int main()
{
init();
while(scanf("%d%d%d", &n, &m, &k)>)
solve();
return ;
}

UVALive 6073 Math Magic的更多相关文章

  1. DP(优化) UVALive 6073 Math Magic

    /************************************************ * Author :Running_Time * Created Time :2015/10/28 ...

  2. Math Magic(完全背包)

    Math Magic Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Sta ...

  3. ZOJ3662:Math Magic(全然背包)

    Yesterday, my teacher taught us about math: +, -, *, /, GCD, LCM... As you know, LCM (Least common m ...

  4. [ZOJ 3662] Math Magic (动态规划+状态压缩)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3662 之前写过这道题,结果被康神吐槽说代码写的挫. 的确,那时候 ...

  5. hdu 4427 Math Magic DP

    思路: dp[i][j][k]表示满足前i个数,和为j,lcm为k的数目. 设a为解的第i+1个数. 那么状态转移就为 dp[i+1][j+a][lcm(a,k)]+=dp[i][j][k]. 但是由 ...

  6. hdu 4427 Math Magic

    一个长了一张数学脸的dp!!dp[ i ][ s ][ t ] 表示第 i 个数,sum为 s ,lcm下标为 t 时的个数.显然,一个数的因子的lcm还是这个数的因子,所以我们的第三维用因子下标代替 ...

  7. ZOJ-3662 Math Magic 背包DP

    这题不错,可惜我还是太弱了,没想到qwq. 看了网上大佬题解之后写的,对比了一下代码,好像我写的还是挺简洁的(逃,只是吞行比较多). 因为直接用lcm的值做下标会超时,所以我们观察发现可以组成lcm为 ...

  8. Math Magic ZOJ - 3662

    核心是要想到只枚举最小公倍数的因子 因为转移过程中一单添加了不是最小公倍数的因子,那么结果必然不合法,虽然最终答案是对的,但是这样的答案根本用不上,反而时间复杂度大大增加 #include<cs ...

  9. zoj3662Math Magic

    Math Magic Time Limit: 3 Seconds       Memory Limit: 32768 KB Yesterday, my teacher taught us about ...

随机推荐

  1. 关于WPF绘图中的path.data在后台重新赋值的语法

    //XAML语法 <Path Name="path_M" Fill="LawnGreen" Data="M 0 0 L 100 0 L 100 ...

  2. 用于dbnull的数据转换。因为用convert.to无法转换dbnull类型

    /// <summary> /// add by wolf /// </summary> public static class ExtendObject { public s ...

  3. 几个gcc的扩展功能

    -finstrument-functions  constructor   destructor __builtin_return_address http://linuxgazette.net/15 ...

  4. javascript indexOf startWith

    判断字符串是否以XX开头 1.切割转换   var str = "ababaa",tags = jquery.trim(str); 2. indexOf方法运行   !tags.i ...

  5. android onNewIntent

    在Android应用程序开发的时候,从一个Activity启动另一个Activity并传递一些数据到新的Activity上非常简单,但是当您需要让后台运行的Activity回到前台并传递一些数据可能就 ...

  6. .NET WinForm画树叶小程序

    看了一片文章(http://keleyi.com/a/bjac/nurox416.htm),是使用分型画树叶,代码是Java的,因为Java很久没弄了,改用C#实现,下载地址: 画树叶小程序下载 核心 ...

  7. MVC Html.AntiForgeryToken() 防止CSRF攻击

    转自:http://blog.csdn.net/cpytiger/article/details/8781457 一.MVC中的Html.AntiForgeryToken()是用来防止跨站请求伪造(C ...

  8. asp.net mvc Html.BeginForm()方法

    Html.BeginForm()方法将会输出<form>标签,而且必须以using包起来,如此便可在using程序代码最后退出时,让asp.net mvc帮你补上<form>标 ...

  9. [简介]HTML5 and CSS3

    一.HTML51.语义标签与新增表单控件标签更加语义化headerfooterarticle等 还增加了许多表单控件记得有:进度条,颜色选择,日期等 2.音频,视频标签关键字:audiovideo 他 ...

  10. android sdk无法更新或者更新缓慢的解决方案

    win7安装android sdk老出 Fetching https://dl-ssl.google.com/android/repository/addon .这是android sdk不能连接到谷 ...