题解-CmdOI2019 口头禅
题面
给 \(n\) 个 \(01\) 串 \(s_i\),\(m\) 个询问问 \(s_{l\sim r}\) 的最长公共子串长度。
数据范围:\(1\le n\le 20000\),\(1\le m\le 10^5\),\(\sum |s_i|\le 4\cdot 10^5\)。
蒟蒻语
蒟蒻看到这个题口胡了一个做法,然后轻松拿到了最优解,发现这是道大水题。
什么猫树或分治我没听说过,反正广义 SAM
上枚举子串乱搞 \(\Theta(n\sqrt n\log n)\) 跑得飞快。
蒟蒻解
首先把串建成广义 SAM
没有问题,为了方便我写了盗版的 /ch
。
离线询问,把 \([l_i,r_i]\) 这个询问挂到 \(r_i\) 上。
顺序枚举 \(r\),同时干这些坏事:
把 \(r_i=r\) 的询问按 \(l_i\) 排序,设有 \(qn\) 个询问。
对于 SAM
的节点 \(p\),维护 \(li_p\) 和 \(ri_p\),表示 \(s_{1\sim r}\) 中这个以这个节点为子串的最右连续区间。
维护方法是枚举 \(s_r\) 的所有子串(暴力跳每个前缀的 \(fa\),时间复杂度 \(\Theta(n\sqrt n)\)),通过 \(r-1\) 递推。
然后对于每个该串子串节点 \(p\),lower_bound
找到第一个 \(l_i\ge li_p\),对询问 \([i,qn]\) 的答案都与该节点代表最长串长度取 \(\max\)。
这东西根据单调性差分一下即可,然后就做完了。
代码
#include <bits/stdc++.h>
using namespace std;
//Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair((a),(b))
#define x first
#define y second
#define be(a) (a).begin()
#define en(a) (a).end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
#define R(i,a,b) for(int i=(a),I=(b);i<I;i++)
#define L(i,a,b) for(int i=(b)-1,I=(a)-1;i>I;i--)
const int iinf=0x3f3f3f3f;
const ll linf=0x3f3f3f3f3f3f3f3f;
//Data
const int N=2e4,lN=4e5,qN=1e5;
int n,qn,ans[qN];
string s[N];
vector<pair<int,int>> que[N];
//SuffixAutoMoton
const int tN=(lN<<1)+1,cN=2;
int tn,ch[tN][cN],fa[tN],len[tN];
int newsam(){
fill(ch[tn],ch[tn]+cN,-1),fa[tn]=-1;
return tn++;
}
int rt=newsam(),t;
void extend(int c){
int p=t,np=t=newsam();
len[np]=len[p]+1;
for(;~p&&!~ch[p][c];p=fa[p]) ch[p][c]=np;
if(!~p) fa[np]=rt;
else {
int q=ch[p][c];
if(len[q]==len[p]+1) fa[np]=q;
else {
int nq=newsam();
copy(ch[q],ch[q]+cN,ch[nq]);
len[nq]=len[p]+1,fa[nq]=fa[q],fa[q]=fa[np]=nq;
for(;~p&&ch[p][c]==q;p=fa[p]) ch[p][c]=nq;
}
}
}
int li[tN],ri[tN],vis[tN];
//Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>qn;
R(i,0,n){
cin>>s[i],t=rt;
for(char c:s[i]) extend(c-'0');
}
R(i,0,qn){
int l,r; cin>>l>>r,--l,--r;
que[r].pb(mp(l,i));
}
fill(vis,vis+tn,-1);
fill(li,li+tn,-2),fill(ri,ri+tn,-2);
R(i,0,n){
sort(be(que[i]),en(que[i]));
vector<int> mx(sz(que[i])+1);
int p=rt,now=0;
for(char c:s[i]){
int q=p=ch[p][c-'0']; now++;
for(;~q&&vis[q]<i;q=fa[q]){
vis[q]=i;
if(ri[q]==i-1) ri[q]=i;
else li[q]=ri[q]=i;
int id=lower_bound(be(que[i]),en(que[i]),
mp(li[q],-1))-be(que[i]);
mx[id]=max(mx[id],min(len[q],now));
}
}
R(j,0,sz(que[i])) mx[j+1]=max(mx[j+1],mx[j]);
R(j,0,sz(que[i])) ans[que[i][j].y]=mx[j];
}
R(i,0,qn) cout<<ans[i]<<"\n";
return 0;
}
祝大家学习愉快!
题解-CmdOI2019 口头禅的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- netfilter 的扩展功能 helper tftp-nat
/* 需要对conntrack进行功能扩展的协议,会初始化一个struct nf_conntrack_helper 实例,把该实例注册到Netfilter中管理的全局哈希表中. 查找helper使用的 ...
- Python _PyQt5 【总】
http://www.cnblogs.com/archisama/p/5442071.html QtCore QtGui QtWidgets QtMultimedia QtBluetooth QtNe ...
- matlab 数组操作作业
写出下列语句的计算结果及作用 1.A= [2 5 7 3 1 3 4 2]; 创建二维数组并赋值 2.[rows, cols] = size(A); 把A的尺寸赋值给数组,rows为行, ...
- 这行代码告诉你!为什么你地下城与勇士(DNF)的装备强化老是失败?
模拟地下城与勇士(DNF)的装备强化 tip1: DNF装备强化在+1-+3 不会失败: +4-+7,失败后物品原有强化等级降低1级: +8-+10,失败后掉3级: 10上11或以上就爆了. tip2 ...
- 这几种实现线程的方法你一定要知道,月薪20k以上的面试都会问到
实现线程的三种方式总结 最近有看到Java线程的实现相关问题,在此对线程实现方式做一个小小的总结,当做笔记,便于日后查看. 平时常用的线程方式有三种: (1).继承Thread类,并重写其run()方 ...
- 加密PDF文件,提高文件安全性
PDF文件的一大优点是可以设置文件的安全性,不仅可以通过证书加密的形式加密文件,还可以通过pdfFactory来设置密码的形式加密文件. 我们可以通过两种方式开启"PDF加密"来为 ...
- guitar pro 系列教程(十):关于Guitar Pro声部的使用技巧
作为一个刚接触吉他的萌音乐的玩家,我们在创作吉他谱时一定要注意其中的声部搭配,因为各个声部的配器音色和旋律会对我们的曲子有着非常重要的影响,而声部的把控技术,也可以体现一个音乐人的能力水平的一方面.今 ...
- symfony框架中使用service
在config文件里面的service.yml写入自己service 1 chat.group_list: //service的名字 2 class: Chat\Service\GroupListSe ...
- cocoslua3.17 android机器上播放音效不全
开发过程中遇到一个问题,一个8秒的音效,在android机器上播放不完就结束了:网上说是由于android播放音效的内存限制的:原因知道了,那怎么解决呢? 通过各种搜索查找发现还是解决不了问题,然后自 ...
- 【linux】系统调用版串口分析&源码实战
目录 前言 参考 1. 实战分析 1.1 开发步骤 1.1.1 获取串口设备路径 1.1.2 打开设备文件 1.1.3 配置串口 termios 结构体 1. c_iflag 输入模式标志 2. c_ ...