Description

Mirko is playing with stacks. In the beginning of the game, he has an empty stack denoted with number 0. In the

ith step of the game he will choose an existing stack denoted with v, copy it and do one of the following actions:

a. place number i on top of the new stack

b. remove the number from the top of the new stack

c. choose another stack denoted with w and count how many different numbers exist that are in the new stack

and in the stack denoted with w

The newly created stack is denoted with i.

Mirko doesn’t like to work with stacks so he wants you to write a programme that will do it for him. For each

operation of type b output the number removed from stack and for each operation of type c count the required

numbers and output how many of them there are.

Input

The first line of input contains the integer N (1 <= N <= 300000), the number of steps in Mirko’s game.

The steps of the game are chronologically denoted with the first N integers.

The ith of the following N lines contains the description of the ith step of the game in one of the following three

forms:

"a v" for operation of type a.

"b v" for operation of type b.

"c v w" for operation of type c.

The first character in the line denotes the type of operation and the following one or two denote the accompanying

stack labels that will always be integers from the interval [0,i-1].

For each operation of type b, the stack we’re removing the element from will not be empty.

Output

For each operation type b or c output the required number, each in their own line, in the order the operations

were given in the input.

Sample Input


5
a 0
a 1
b 2
c 2 3
b 4
11
a 0
a 1
a 2
a 3
a 2
c 4 5
a 5
a 6
c 8 7
b 8
b 8

Sample Output


2
1
2
2
2
8
8

Hint

In the beginning, we have the stack S0 = {}. In the first step, we copy S0 and place

number 1 on top, so S1 = {1}. In the second step, we copy S1 and place 2 on top of it, S2 = {1,2}. In the third step we

copy S2 and remove number 2 from it, S3 = {1}. In the fourth step we copy S2 and denote the copy with S4, then count

the numbers appearing in the newly created stack S4 and stack S3, the only such number is number 1 so the solution is 1.

In the fifth step we copy S4 and remove number 2 from it, S5 = {1}.

题意:一开始给你一个空栈,有3个操作。1.a v:先把编号为v的栈复制,然后在栈顶上放i 2.b v:先把编号为v的栈复制,然后去掉栈顶元素 3.c v w:先把编号为v的栈复制,然后数出同时存在于v,w栈的数的个数。开一个二叉树,如果是a操作,那么加入新的节点,如果是b操作,那么找到v的父节点,如果是c操作,那么全部输入读入后,求一个lca。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 300005
vector<int>vec[maxn];
vector<int>::iterator it;
struct node{
int x,y;
}c[maxn]; int jd[maxn],fa[maxn],f[maxn][25],dep[maxn],ans[maxn],daibiao[maxn],vis[maxn],siz[maxn]; int lca(int x,int y){
int i;
if(dep[x]<dep[y]){
swap(x,y);
}
for(i=20;i>=0;i--){
if(dep[f[x][i] ]>=dep[y]){
x=f[x][i];
}
}
if(x==y)return x;
for(i=20;i>=0;i--){
if(f[x][i]!=f[y][i]){
x=f[x][i];y=f[y][i];
}
}
return f[x][0];
} int main()
{
int n,m,i,j,x,jiedian,jiedian1,y,k;
char s[10];
while(scanf("%d",&m)!=EOF)
{
jd[1]=1;
for(i=1;i<=m+1;i++)vec[i].clear();
int t=1;
daibiao[1]=1;
dep[1]=1;
for(i=2;i<=m+1;i++){
scanf("%s%d",s,&x);x++;
jiedian=jd[x];
if(s[0]=='a'){
t++;
dep[t]=dep[jiedian]+1;
jd[i]=t;
f[t][0]=jiedian;
daibiao[t]=i;
c[i].x=c[i].y=-2;
}
else if(s[0]=='b'){
ans[i]=daibiao[jiedian];
jiedian1=f[jiedian][0];
jd[i]=jiedian1;
c[i].x=c[i].y=-1;
}
else if(s[0]=='c'){
scanf("%d",&y);y++;
jd[i]=jiedian;
c[i].x=jd[i];c[i].y=jd[y];
}
}
for(k=1;k<=20;k++){
for(i=1;i<=m+1;i++){
f[i][k]=f[f[i][k-1]][k-1];
}
}
for(i=2;i<=m+1;i++){
if(c[i].x==-2)continue;
if(c[i].x==-1){
printf("%d\n",ans[i]-1);
}
else{
int gong=lca(c[i].x,c[i].y );
printf("%d\n",dep[gong]-1); }
}
}
return 0;
}

zjnu1726 STOGOVI (lca)的更多相关文章

  1. BZOJ 3083: 遥远的国度 [树链剖分 DFS序 LCA]

    3083: 遥远的国度 Time Limit: 10 Sec  Memory Limit: 1280 MBSubmit: 3127  Solved: 795[Submit][Status][Discu ...

  2. BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2050  Solved: 817[Submit][Status ...

  3. [bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

  4. [bzoj2588][count on a tree] (主席树+lca)

    Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...

  5. [板子]倍增LCA

    倍增LCA板子,没有压行,可读性应该还可以.转载请随意. #include <cstdio> #include <cstring> #include <algorithm ...

  6. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  7. [bzoj3626][LNOI2014]LCA

    Description 给出一个$n$个节点的有根树(编号为$0$到$n-1$,根节点为$0$). 一个点的深度定义为这个节点到根的距离$+1$. 设$dep[i]$表示点$i$的深度,$lca(i, ...

  8. (RMQ版)LCA注意要点

    inline int lca(int x,int y){ if(x>y) swap(x,y); ]][x]]<h[rmq[log[y-x+]][y-near[y-x+]+]])? rmq[ ...

  9. bzoj3631: [JLOI2014]松鼠的新家(LCA+差分)

    题目大意:一棵树,以一定顺序走完n个点,求每个点经过多少遍 可以树链剖分,也可以直接在树上做差分序列的标记 后者打起来更舒适一点.. 具体实现: 先求x,y的lca,且dep[x]<dep[y] ...

随机推荐

  1. LeetCode235 二叉搜索树的最近公共祖先

    给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q,最近公共祖先表示为一个结点 x,满足 x 是 p.q 的祖 ...

  2. /etc/hosts导致的问题

    今天安装完成orzdba之后,执行./orzdba -l 报如下错误: Usage: Socket::inet_ntoa(ip_address_sv) at /var/lib/mysql/trunk/ ...

  3. SQL语句中 ` 的作用

    SQL语句中 ` 的作用 做攻防世界WEB区 supersqli 题目,在构建SQL语句时,遇到SQL语句中有 ` 时可以解析,没有则不能. 查阅资料得知,` 通常用来说明其中的内容是数据库名.表名. ...

  4. mount: /dev/sdxx already mounted or /xxxx busy解决方法

    异常现象: 解决方法: 1.    輸入root的密碼,進入單用戶2.    重新掛載/目錄,使其變為可讀可寫 # mount –o rw,remount / 3.    修改/etc/fstab文件 ...

  5. Hive常用性能优化方法实践全面总结

    Apache Hive作为处理大数据量的大数据领域数据建设核心工具,数据量往往不是影响Hive执行效率的核心因素,数据倾斜.job数分配的不合理.磁盘或网络I/O过高.MapReduce配置的不合理等 ...

  6. uni-app开发经验分享十五: uni-app 蓝牙打印功能

    最近在做uni-app项目时,遇到了需要蓝牙打印文件的功能需要制作,在网上找到了一个教程,这里分享给大家. 引入tsc.js 简单得引入到自己所需要得页面中去,本次我们只要到了标签模式,他同时还有账单 ...

  7. CMU数据库(15-445)-实验2-B+树索引实现(中)删除

    3. Delete 实现 附上实验2的第一部分 https://www.cnblogs.com/JayL-zxl/p/14324297.html 3. 1 删除算法原理 如果叶子结点中没有相应的key ...

  8. ovs-actions

    1. 端口说明 OVS支持如下的标准OpenFlow端口名称(括号中是端口号): in_port (65528 or 0xfff8; 0xfffffff8) table (65529 or 0xfff ...

  9. SuperUpdate.sh 一键更换Linux软件源脚本

    一.前言 有时候会遇到 Linux 的源更新速度非常的缓慢,特别是在国内使用默认的源,因为国内的网络环境,经常会出现无法更新,更新缓慢的情况.在这种情况下,更换一个更适合或者说更近,更快的软件源,会为 ...

  10. Linux日志文件(常见)及其功能

    日志文件是重要的系统信息文件,其中记录了许多重要的系统事件,包括用户的登录信息.系统的启动信息.系统的安全信息.邮件相关信息.各种服务相关信息等.这些信息有些非常敏感,所以在 Linux 中这些日志文 ...