Problem Description
Consider a two-dimensional space with a set of points (xi, yi) that satisfy xi < xj and yi > yj for all i < j. We want to have them all connected by a directed tree whose edges go toward either right (x positive) or upward (y positive). The figure below shows
an example tree.




Write a program that finds a tree connecting all given points with the shortest total length of edges.
 

Input
The input begins with a line that contains an integer n (1 <= n <= 1000), the number of points. Then n lines follow. The i-th line contains two integers xi and yi (0 <= xi, yi <= 10000), which give the coordinates of the i-th point.
 

Output
Print the total length of edges in a line.
 

Sample Input

5
1 5
2 4
3 3
4 2
5 1
1
10000 0
 

Sample Output

12
0

这题要注意树的左端点必定在左上端点向下做垂线和右下端点向左作垂线的交点,思路和石子合并差不多,需要用四边形优化。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define ll long long
#define inf 999999999
int x[1006],y[1006],dp[1006][1006],s[1006][1006];
int dis(int x1,int y1,int x2,int y2){
return abs(x1-x2)+abs(y1-y2);
} int main()
{
int n,m,i,j,len,k;
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++){
scanf("%d%d",&x[i],&y[i]);
dp[i][i]=0;
}
for(i=1;i<=n-1;i++){
s[i][i+1]=i;
dp[i][i+1]=dis(x[i],y[i],x[i+1],y[i+1]);
}
for(len=3;len<=n;len++){
for(i=1;i+len-1<=n;i++){
j=i+len-1;
dp[i][j]=inf; for(k=s[i][j-1];k<=s[i+1][j];k++){
if(dp[i][j]>dp[i][k]+dp[k+1][j]+abs(y[j]-y[k])+abs(x[i]-x[k+1]) ){
dp[i][j]=dp[i][k]+dp[k+1][j]+abs(y[j]-y[k])+abs(x[i]-x[k+1]);
s[i][j]=k;
}
}
}
}
printf("%d\n",dp[1][n]); }
return 0;
}

hdu3516 Tree Construction的更多相关文章

  1. hdu3516 Tree Construction (区间dp+四边形优化)

    构造方法肯定是把相邻两个点连到一起,变成一个新点,然后再把新点和别的点连到一起.... 设f[i,j]为把第i到j个点都连到一起的代价,那么答案就是f[1,n] f[i,j]=min{f[i,k]+f ...

  2. [HDU3516] Tree Construction [四边形不等式dp]

    题面: 传送门 思路: 这道题有个结论: 把两棵树$\left[i,k\right]$以及$\left[k+1,j\right]$连接起来的最小花费是$x\left[k+1\right]-x\left ...

  3. hdu3516 Tree Construction (四边形不等式)

    题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj.用下面的连起来,使得所有边的长度最小? 题解:直接给出吧 f[i][j]=min(f[i][k]+f ...

  4. 数据结构 - Codeforces Round #353 (Div. 2) D. Tree Construction

    Tree Construction Problem's Link ------------------------------------------------------------------- ...

  5. codeforces 675D D. Tree Construction(线段树+BTS)

    题目链接: D. Tree Construction D. Tree Construction time limit per test 2 seconds memory limit per test ...

  6. HDOJ 3516 Tree Construction

    四边形优化DP Tree Construction Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

  7. Codeforces Round #353 (Div. 2) D. Tree Construction 模拟

    D. Tree Construction 题目连接: http://www.codeforces.com/contest/675/problem/D Description During the pr ...

  8. CF 675D——Tree Construction——————【二叉搜索树、STL】

    D. Tree Construction time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  9. STL---Codeforces675D Tree Construction(二叉树节点的父亲节点)

    Description During the programming classes Vasya was assigned a difficult problem. However, he doesn ...

随机推荐

  1. TCP/IP五层模型-传输层-TCP协议

    ​1.定义:TCP是一种面向连接.可靠的.基于字节流的传输控制协议. 2.应用场景:TCP为可靠传输,适合对数据完整性要求高,对延时不敏感的场景,比如邮件. 3.TCP报文:①TCP报文格式: ②TC ...

  2. nodejs中的文件系统

    . 目录 简介 nodejs中的文件系统模块 Promise版本的fs 文件描述符 fs.stat文件状态信息 fs的文件读写 fs的文件夹操作 path操作 简介 nodejs使用了异步IO来提升服 ...

  3. SAP下载文档为乱码

    通过事物WE60下载的文档为乱码,主要原因是编码格式的不匹配,通常默认的编码格式为ANSI编码,那么我们需要将源码的编码格式转换成UTF-8,这样问题可以解决了.   附:编码格式介绍 不同的国家和地 ...

  4. JavaScript小记

    JavaScript小记 1. 简介 1. 语言描述 JavaScript 是一门跨平台.面向对象的弱类型动态脚本编程语言 JavaScript 是一门基于原型.函数先行的语言 JavaScript ...

  5. 并发编程常用工具类(二) SymaPhore实现线程池

    1.symaPhore简介 symaphore(信号量)用来控制同时访问某个资源的线程数量,一般用在并发流量控制.个人对它的理解相当于是接待室每次只能接待固定数量的人,当达到最高接待数的时候,其他人就 ...

  6. Linux系统设置 SSH 通过密钥登录

    我们一般使用 PuTTY 等 SSH 客户端来远程管理 Linux 服务器.但是,一般的密码方式登录,容易有密码被暴力破解的问题.所以,一般我们会将 SSH 的端口设置为默认的 22 以外的端口,或者 ...

  7. NIO非阻塞网络编程原理

    NIO非阻塞网络编程原理 1.NIO基本介绍 Java NIO 全称 java non-blocking IO,是指 JDK 提供的新 API.从 JDK1.4 开始,Java 提供了一系列改进的 输 ...

  8. Maven 依赖机制

    概述 在 Maven 依赖机制的帮助下自动下载所有必需的依赖库,并保持版本升级.让我们看一个案例研究,以了解它是如何工作的.假设你想使用 Log4j 作为项目的日志.这里你要做什么? 传统方式 访问 ...

  9. Python学习【第2篇】:循环

    For循环 pass while 循环 pass 练习题: 1.使用while循环输入 1 2 3 4 5 6     8 9 10,不输出7 n = 1while n< 11: if n == ...

  10. FFT,NTT 笔记

    FFT 简介 FFT是干啥的?它是用来加速多项式乘法的.我们平时经常求多项式乘法,比如\((x+1)(x+3)=(x^2+4x+3)\).假设两个式子都是\(n\)项(不足的补0),那朴素的算法是\( ...