Dire wolves, also known as Dark wolves, are extraordinarily large and powerful wolves. Many, if not all, Dire Wolves appear to originate from Draenor.
Dire wolves look like normal wolves, but these creatures are of nearly twice the size. These powerful beasts, 8 - 9 feet long and weighing 600 - 800 pounds, are the most well-known orc mounts. As tall as a man, these great wolves have long tusked jaws that look like they could snap an iron bar. They have burning red eyes. Dire wolves are mottled gray or black in color. Dire wolves thrive in the northern regions of Kalimdor and in Mulgore.
Dire wolves are efficient pack hunters that kill anything they catch. They prefer to attack in packs, surrounding and flanking a foe when they can.
— Wowpedia, Your wiki guide to the World of Warcra
Matt, an adventurer from the Eastern Kingdoms, meets a pack of dire wolves. There are N wolves standing in a row (numbered with 1 to N from left to right). Matt has to defeat all of them to survive.
Once Matt defeats a dire wolf, he will take some damage which is equal to the wolf’s current attack. As gregarious beasts, each dire wolf i can increase its adjacent wolves’ attack by bi. Thus, each dire wolf i’s current attack consists of two parts, its basic attack ai and the extra attack provided by the current adjacent wolves. The increase of attack is temporary. Once a wolf is defeated, its adjacent wolves will no longer get extra attack from it. However, these two wolves (if exist) will become adjacent to each other now.
For example, suppose there are 3 dire wolves standing in a row, whose basic attacks ai are (3, 5, 7), respectively. The extra attacks bi they can provide are (8, 2, 0). Thus, the current attacks of them are (5, 13, 9). If Matt defeats the second wolf first, he will get 13 points of damage and the alive wolves’ current attacks become (3, 15).
As an alert and resourceful adventurer, Matt can decide the order of the dire wolves he defeats. Therefore, he wants to know the least damage he has to take to defeat all the wolves.
 
Input
The first line contains only one integer T , which indicates the number of test cases. For each test case, the first line contains only one integer N (2 ≤ N ≤ 200).
The second line contains N integers ai (0 ≤ ai ≤ 100000), denoting the basic attack of each dire wolf.
The third line contains N integers bi (0 ≤ bi ≤ 50000), denoting the extra attack each dire wolf can provide.
 
Output
For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1), y is the least damage Matt needs to take.
 
Sample Input
2
3
3 5 7
8 2 0
10
1 3 5 7 9 2 4 6 8 10
9 4 1 2 1 2 1 4 5 1
 
Sample Output
Case #1: 17
Case #2: 74
Hint
In the first sample, Matt defeats the dire wolves from left to right. He takes 5 + 5 + 7 = 17 points of damage which is the least damage he has to take.

题意:

就是有一对狼,每个狼有初始的攻击力,并且还能给左右两边的狼提供攻击力加成,当冒险家杀死一头狼的时候他也会受到这个狼目前攻击力的伤害

实例解析:

3
3 5 7
8 2 0

有三头狼,刚开始第二头狼给他左右两边的狼各加2攻击力,由于第一头狼左边没有狼,所以只给第二头狼加,第三头狼还那样,一系列操作后攻击力为(5,13,9),从左往右杀死狼

1、受到5点攻击,且第二头狼的攻击力加成消失(5,9)

2、受到5点攻击,且第三头狼攻击加成消失(7)

3最后结果5+5+7=17

错解:

source就是原有攻击力,add就是增加得攻击力

dp[i][j]=min(dp[i][j],min(dp[i+1][j]+source[i]+add[i+1],dp[i][j-1]+source[j]+add[j-1]));

原本认为就是普通的区间dp,但是在一个父区间中的第一个攻击得人和最后才攻击的人与子区间可能不一样

例如:

3

3  4  5

1 15 3

这样的话最后肯定是先攻击第二个,但是按我们得转移方程那就是从一号和三号中选择一个来先攻击,所以这样就错了<_>

正解:

dp[i][j]=min(dp[i][j], dp[i][k-1]+dp[k+1][j]+a[k]+b[i-1]+b[j+1])

dp[i][i]=a[i]+b[i-1]+b[j+1];

这个dp[i][j]中的i、j就代表在原给出的序列中杀死第i到j头狼的最小伤害

其中这个k(i<=k<=j)就是枚举那一头狼是最后杀死的

这个dp[i][i]就提供了dp[i][j]的结果,所以要确定求dp[i][j]的时候dp[k][k](i<=k<=j)已经求出来了(典型的由部分推整体)

代码:

 1 #include<cstdio>
2 #include<cstring>
3 #include<iostream>
4 #include<algorithm>
5 #include<vector>
6 #include<queue>
7 using namespace std;
8 typedef long long ll;
9 const int maxn=205;
10 const int INF=0x3f3f3f3f;
11 const long long inf=0x8080808080808080;
12 const int mod=1000007;
13 int dp[maxn][maxn],v[maxn],w[maxn];
14 int main()
15 {
16 int t,k=0;
17 scanf("%d",&t);
18 while(t--)
19 {
20 k++;
21 int n;
22 scanf("%d",&n);
23 for(int i=1;i<=n;++i)
24 {
25 scanf("%d",&v[i]);
26 }
27 for(int i=1;i<=n;++i)
28 {
29 scanf("%d",&w[i]);
30 }
31 memset(dp,0,sizeof(dp));
32 for(int i=n;i>=1;--i)
33 {
34 for(int j=i;j<=n;++j)
35 {
36 if(i==j)
37 {
38 dp[i][j]=w[i-1]+w[i+1]+v[i];
39 continue;
40 }
41 dp[i][j]=INF;
42 for(int k=i;k<=j;++k)
43 {
44 dp[i][j]=min(dp[i][j],dp[i][k-1]+dp[k+1][j]+w[i-1]+w[j+1]+v[k]);
45 }
46 }
47 }
48 printf("Case #%d: %d\n",k,dp[1][n]);
49 }
50 return 0;
51 }

Dire Wolf——HDU5115的更多相关文章

  1. Dire Wolf——HDU5115(区间DP)

    题意 就是有一对狼,每个狼有初始的攻击力,并且还能给左右两边的狼提供攻击力加成,当冒险家杀死一头狼的时候他也会受到这个狼目前攻击力的伤害 实例解析 33 5 78 2 0 有三头狼,刚开始第二头狼给他 ...

  2. Dire Wolf ---hdu5115(区间dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5115 题意:有一排狼,每只狼有一个伤害A,还有一个伤害B.杀死一只狼的时候,会受到这只狼的伤害A和这只 ...

  3. HDU 5115 Dire Wolf 区间dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5115 Dire Wolf Time Limit: 5000/5000 MS (Java/Others ...

  4. 动态规划(区间DP):HDU 5115 Dire Wolf

    Dire wolves, also known as Dark wolves, are extraordinarily large and powerful wolves. Many, if not ...

  5. hdu 5115 Dire Wolf(区间dp)

    Problem Description Dire wolves, also known as Dark wolves, are extraordinarily large and powerful w ...

  6. Dire Wolf(区间DP)

    Dire Wolf Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others)Total ...

  7. Dire Wolf HDU - 5115(区间dp)

    Dire Wolf Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others)Total ...

  8. HDU - 5115 Dire Wolf (非原创)

    Dire wolves, also known as Dark wolves, are extraordinarily large and powerful wolves. Many, if not ...

  9. HDU5115 Dire Wolf(区间DP)

    渐渐认识到区域赛更侧重的是思维及基本算法的灵活运用,而不是算法的量(仅个人见解),接下来要更多侧重思维训练了. 区间DP,dp[i][j]表示从i到j最终剩余第i 与第j只的最小伤害值,设置0与n+1 ...

随机推荐

  1. 【Flutter】功能型组件之导航返回拦截

    前言 为了避免用户误触返回按钮而导致APP退出,在很多APP中都拦截了用户点击返回键的按钮,然后进行一些防误触判断,比如当用户在某一个时间段内点击两次时,才会认为用户是要退出(而非误触).Flutte ...

  2. Azure App object和Service Principal

    为了把Identity(身份)和Access Management function(访问管理功能)委派给Azure AD,必须向Azure AD tenant注册应用程序.使用Azure AD注册应 ...

  3. oracle绑定变量测试及性能对比

    1.创建测试数据 2.查看cursor_sharing的值 SQL> show parameter cursor_sharing; NAME TYPE VALUE --------------- ...

  4. oracle创建恢复编录(recovery catalog)

    1.在要作为恢复编录的数据库创建用户 create user rman identified by oracle default tablespace system temporary TABLESP ...

  5. MyBatis初级实战之五:一对一关联查询

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  6. IP2723T中文规格书PDF

    IP2723T 是一款集成多种协议.用于 USB 输出端口的快充协议 IC.支持多种快充协议,包括 USBTypeC DFP,PD2.0/PD3.0/PPS,HVDCPQC4/QC4+/QC3.0/Q ...

  7. OpenCV 和 Dlib 人脸识别基础

    00 环境配置 Anaconda 安装 1 下载 https://repo.anaconda.com/archive/ 考虑到兼容性问题,推荐下载Anaconda3-5.2.0版本. 2 安装 3 测 ...

  8. docker容器的基本命令

      #安装docker yum -y install docker systemctl start docker.service systemctl status docker systemctl e ...

  9. Linux性能监测(系统监测统计命令详解)

    通过这个命令,可以最简便的看出系统当前基本状态信息,这里面最有用是负载指标,如果你还想查看当前系统的CPU/内存以及相关的进程状态,可以使用TOP命令. TOP 通过TOP命令可以详细看出当前系统的C ...

  10. git的使用学习笔记---分支删除

    一.使用场景: 1.修改bug,原来分支不管用 2,分支太多不易管理 二.方法 git branch -d branch1 无法删除:原因在与该分支为目前工作的分支,所以要切换分支 git check ...