LINK:旗鼓相当的对手

考场上遇到这种简单的树形dp优化题目我真的不一定能写出来..

虽然这道题思路很简单 设f[i][j]表示距i距离为j的点的个数 g[i][j]表示距i距离为j的点权和。

可以发现我们转枚举子树转移的时候可以得到某个点的答案。其实这道题让我们求的是以x为根的所有子树之间的答案。

这两个数组转移以深度转移 所以复杂度为n^2 长链刨分一下即可O(n)。

但是我并不会长链刨分时的指针写法。所以考虑其他做法。

可以发现如果维护这两个数组的转移必然n^2 这个时候我们考虑直接给全局贡献 即每个点x以d[x]为深度的贡献。

这样我们就不需要维护距某个点的深度了 直接查d[x]+k的距离即可。

但是这需要子树内外的差分。暴力差分还是n^2.

考虑dsu on tree 暴力把轻儿子删掉之后统计重儿子 然后重儿子的代价保留。

对于某个点我们再次遍历所有轻儿子一边统计答案一边累计数组。

最后如果这个点也是轻儿子那么再次情况即可。

一个点距根节点只有logn条轻边 所以这样做复杂度nlogn.

const int MAXN=100010;
int n,len,k;ll ans[MAXN],w[MAXN],sum;
int son[MAXN],a[MAXN],d[MAXN],f[MAXN],cnt[MAXN],sz[MAXN];
int lin[MAXN],ver[MAXN<<1],nex[MAXN<<1];
inline void add(int x,int y)
{
ver[++len]=y;nex[len]=lin[x];lin[x]=len;
ver[++len]=x;nex[len]=lin[y];lin[y]=len;
}
inline void dfs(int x,int father)
{
sz[x]=1;f[x]=father;
d[x]=d[father]+1;
go(x)
{
if(tn==father)continue;
dfs(tn,x);
sz[x]+=sz[tn];
if(sz[son[x]]<sz[tn])son[x]=tn;
}
}
inline void update(int x,int fa,int op)
{
int ww=k+2*d[fa]-d[x];
if(ww>0&&op>0&&x!=fa)
{
sum=sum+(ll)cnt[ww]*a[x];
sum=sum+w[ww];
}
go(x)if(tn!=f[x])update(tn,fa,op);
}
inline void add(int x,int fa,int op)
{
cnt[d[x]]+=op;w[d[x]]+=op*a[x];
go(x)if(tn!=f[x])add(tn,fa,op);
}
inline void dp(int x,int op)
{
go(x)if(tn!=f[x]&&tn!=son[x])dp(tn,0);//先处理轻儿子.
if(son[x])dp(son[x],1);//处理重儿子.
go(x)if(tn!=f[x]&&tn!=son[x])update(tn,x,1),add(tn,x,1);
++cnt[d[x]];w[d[x]]+=a[x];ans[x]=sum;sum=0;
if(!op)add(x,x,-1);
}
int main()
{
freopen("1.in","r",stdin);
get(n);get(k);
rep(1,n,i)get(a[i]);
rep(1,n-1,i)add(read(),read());
dfs(1,0);dp(1,1);
rep(1,n,i)printf("%lld ",ans[i]);
return 0;
}

牛客练习赛60 E 旗鼓相当的对手的更多相关文章

  1. 牛客练习赛60 A—F题解(缺E题)

    本蒟蒻这次只过了三题 赛后学习了一下出题人巨佬的标码(码风比我好多了 贴的代码有些是仿出题人)现在将自己的理解写下来与大家分享 A这个题一分析就是每个数字都会与所有数字&一下 (a&a ...

  2. 牛客练习赛60 D 斩杀线计算大师

    LINK:斩杀线计算大师 给出a,b,c三个值 求出 ax+by+cz=k的x,y,z的正整数解 保证一定有解. 考虑两个数的时候 ax+by=k 扩展欧几里得可以解决. 三个数的时候 一个暴力的想法 ...

  3. 牛客练习赛31 B 赞迪卡之声妮莎与奥札奇 逻辑,博弈 B

    牛客练习赛31 B 赞迪卡之声妮莎与奥札奇 https://ac.nowcoder.com/acm/contest/218/B 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 2621 ...

  4. [堆+贪心]牛客练习赛40-B

    传送门:牛客练习赛40 题面: 小A手头有 n 份任务,他可以以任意顺序完成这些任务,只有完成当前的任务后,他才能做下一个任务 第 i 个任务需要花费  x_i 的时间,同时完成第 i 个任务的时间不 ...

  5. 【并查集缩点+tarjan无向图求桥】Where are you @牛客练习赛32 D

    目录 [并查集缩点+tarjan无向图求桥]Where are you @牛客练习赛32 D PROBLEM SOLUTION CODE [并查集缩点+tarjan无向图求桥]Where are yo ...

  6. 牛客练习赛31 D 神器大师泰兹瑞与威穆 STL,模拟 A

    牛客练习赛31 D 神器大师泰兹瑞与威穆 https://ac.nowcoder.com/acm/contest/218/D 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 26214 ...

  7. 最小生成树--牛客练习赛43-C

    牛客练习赛43-C 链接: https://ac.nowcoder.com/acm/contest/548/C 来源:牛客网 题目描述 ​ 立华奏是一个刚刚开始学习 OI 的萌新. 最近,实力强大的 ...

  8. 牛客练习赛28-B(线段树,区间更新)

    牛客练习赛28 - B 传送门 题目 qn姐姐最好了~ ​ qn姐姐给你了一个长度为n的序列还有m次操作让你玩, ​ 1 l r 询问区间[l,r]内的元素和 ​ 2 l r 询问区间[l,r]内的 ...

  9. 牛客练习赛26:D-xor序列(线性基)

    链接:牛客练习赛26:D-xor序列(线性基) 题意:小a有n个数,他提出了一个很有意思的问题:他想知道对于任意的x, y,能否将x与这n个数中的任意多个数异或任意多次后变为y 题解:线性基 #inc ...

随机推荐

  1. 转载---最简单的JavaScript模板引擎

    转载自:http://www.cnblogs.com/dolphinX/p/3489269.html,http://blog.jobbole.com/56689/

  2. redis(二十二):Redis 集群(proxy 型)一

    redis伪集群搭建 搭建环境是vmware虚拟机+ubuntu-14.04,以redis伪集群的方式搭建搭建,一共实现了6台机器集群的搭建,三个master节点和三个slave节点. <pre ...

  3. POJ 1063 Flip and Shift 最详细的解题报告

    题目来源:Flip and Shift 题目大意:一个椭圆形的环形容器中有黑色和白色两种盘子,问你是否可以将黑色的盘子连续的放在一起.你可以有以下两种操作: 1.顺时针旋转所有的盘子 2.顺时针旋转3 ...

  4. Quartz.Net系列(十二):六大Calendar(Annual、Cron、Daily、Holiday、Monthly、Weekly)

    Quartz.Net中为了动态排除一些时间,而使用Calendar可以做到 1.DailyCalendar 可以动态的排除一天中的某些时间段 示例:在一天当中的13:00到14:00不要执行 publ ...

  5. Kubernetes部署通用手册 (支持版本1.19,1.18,1.17,1.16)

    Kubernetes平台环境规划 操作环境 rbac 划分(HA高可用双master部署实例) 本文穿插了ha 高可用部署的实例,当前章节设计的是ha部署双master 部署 内网ip 角色 安装软件 ...

  6. 整理 Linux下列出目录内容的命令

    在 Linux 中,有非常多的命令可以让我们用来执行各种各样的任务.当我们想要像使用文件浏览器一样列出一个目录下的内容时,大家第一时间想到的是 ls 命令.但只有 ls 命令能实现这个目的吗?显然不是 ...

  7. MnasNet:经典轻量级神经网络搜索方法 | CVPR 2019

    论文提出了移动端的神经网络架构搜索方法,该方法主要有两个思路,首先使用多目标优化方法将模型在实际设备上的耗时融入搜索中,然后使用分解的层次搜索空间,来让网络保持层多样性的同时,搜索空间依然很简洁,能够 ...

  8. 使用Red5-Pro Android官方Demo拆解分析(一)

    一.配置文件 1.导入库文件jniLibs到main文件夹下 2.导入red5streaming.jar 3.在build里到入其他的包,代码如下: dependencies { implementa ...

  9. 谷歌浏览器扩展 crx 下载

    下方服务可让国内成功下载谷歌浏览器.crx 扩展,如谷歌浏览器无法安装,可以使用终极解决方法,把.crx 解压缩,然后在扩展中心中开启 开发者模式然后选择加载已解压的扩展程序. 需要注意的是解压缩的文 ...

  10. MySQL数据库---记录相关操作

    序 表中记录的相关操作一共四种:插入,更新,删除.查询.其中使用最多,也是最难的就是查询. 记录的插入 1. 插入完整数据(顺序插入) 语法一: INSERT INTO 表名(字段1,字段2,字段3… ...