Codeforces Global Round 11 个人题解(B题)
Codeforces Global Round 11
1427A. Avoiding Zero
题目链接:click here
待补
1427B. Chess Cheater
题目链接:click here
Example
input
8
5 2
WLWLL
6 5
LLLWWL
7 1
LWLWLWL
15 5
WWWLLLWWWLLLWWW
40 7
LLWLWLWWWLWLLWLWWWLWLLWLLWLLLLWLLWWWLWWL
1 0
L
1 1
L
6 1
WLLWLW
output
7
11
6
26
46
0
1
6
Note
第一个测试用例的说明。 在改变任何结果之前,得分为 \(2\) 分。 的确,您赢得了第一场比赛,因此获得了\(1\)分,您也赢得了第三场,因此又获得了\(1\)分(而不是\(2\)分,因为输了第二场比赛)。
作弊的最佳方法是更改第二局和第四局的结果。 这样做,您最终赢得了前四场比赛(结果的字符串变为WWWWL)。 因此,新分数是\(7 = 1 + 2 + 2 + 2\) :第一场比赛\(1\)分,第二场,第三场和第四场比赛\(2\)分。
第二个测试用例的说明。 在更改任何结果之前,得分为\(3\) 。确实,您赢得了第四场比赛,所以您获得了\(1\)分,并且您还赢得了第五场比赛,因此又获得了\(2\)分(因为您也赢得了上一场比赛)。
作弊的最佳方法是更改第一局,第二局,第三局和第六局的结果。 这样做,您最终赢得了所有比赛(结果的字符串变成WWWWWW)。 因此,新分数是\(11 = 1 + 2 + 2 + 2 + 2 + 2\):第一场比赛\(1\)分,其他所有比赛\(2\)分。
思路:
请注意,分数等于
\]
连胜是连续获胜的最大顺序。
在下面的说明中,变量\(#\{wins\},#\{winning\_streaks\}\) 始终与初始情况相关。
如果 \(k +#\{wins\}≥n\),则有可能赢得所有比赛,因此答案为 \(2n-1\) 。
否则,很明显,我们要转换k获胜中的k损失。因此,作弊后,获胜次数将为\(k +#\{wins\}\)。考虑到以上公式,仍然仅是要减少获胜间隔的数量。
我们如何才能减少连胜的次数?非常直观的是,我们将从长度最短的差距开始,以“填补”连续的获胜间隔之间的差距。可以证明,如果没有填补 g 个缺口(即在作弊之后,g个缺口仍然至少包含一个损失),则至少有g + 1个获胜间隔。
实现过程如下。通过线性扫描,我们可以找到间隙的长度,然后对它们进行排序。最后,我们计算可以选择的总和 \(≤k\) 的数量。答案是
\]
解决方案的复杂度为 \(O(log(n))\)。
AC代码
#include<bits/stdc++.h>
#define ms(a,b) memset(a,b);
using namespace std;
typedef long long ll;
int main() {
//freopen("in.txt", "r", stdin);
ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int T;
cin >> T;
for (int t = 1; t <= T; t++) {
int N, K;
cin >> N >> K;
string S;
cin >> S;
int winning_streaks_cnt = 0;
int wins = 0;
int losses = 0;
vector<int> losing_streaks;
for (int i = 0; i < N; i++) {
if (S[i] == 'W') {
wins++;
if (i == 0 or S[i - 1] == 'L') winning_streaks_cnt++;
}
if (S[i] == 'L') {
losses++;
if (i == 0 or S[i - 1] == 'W') losing_streaks.push_back(0);
losing_streaks.back()++;
}
}
if (K >= losses) {
cout << 2 * N - 1 << "\n";
continue;
}
if (wins == 0) {
if (K == 0) cout << 0 << "\n";
else cout << 2 * K - 1 << "\n";
continue;
}
if (S[0] == 'L') losing_streaks[0] = 1e8;
if (S[N - 1] == 'L') losing_streaks.back() = 1e8;
sort(losing_streaks.begin(), losing_streaks.end());
wins += K;
for (int ls : losing_streaks) {
if (ls > K) break;
K -= ls;
winning_streaks_cnt--;
}
cout << 2 * wins - winning_streaks_cnt << "\n";
}
}
Codeforces Global Round 11 个人题解(B题)的更多相关文章
- Codeforces Global Round 1 (A-E题解)
Codeforces Global Round 1 题目链接:https://codeforces.com/contest/1110 A. Parity 题意: 给出{ak},b,k,判断a1*b^( ...
- Codeforces Global Round 11 A~D题解
A.Avoiding Zero 题目链接:https://codeforces.ml/contest/1427 题目大意:给定一个数组a1,a2...,an,要求找出一个a重排后的数组b1,b2,.. ...
- Codeforces Global Round 11【ABCD】
比赛链接:https://codeforces.com/contest/1427 A. Avoiding Zero 题意 将 \(n\) 个数重新排列使得不存在为 \(0\) 的前缀和. 题解 计算正 ...
- Codeforces Global Round 11 D. Unshuffling a Deck(构造/相邻逆序对)
题目链接:https://codeforces.com/contest/1427/problem/D 题意 给出一个大小为 \(n\) 的排列,每次操作可以将 \(n\) 个数分为 \(1 \sim ...
- Codeforces Global Round 11 C. The Hard Work of Paparazzi(dp/最长上升子序列)
题目链接:https://codeforces.com/contest/1427/problem/C 题意 \(r\) 行与 \(r\) 列相交形成了 \(r \times r\) 个点,初始时刻记者 ...
- Codeforces Global Round 11 B. Chess Cheater(贪心)
题目链接:https://codeforces.com/contest/1427/problem/B 题意 给出一个长为 \(n\) 由 W, L 组成的字符串,如果一个 W 左侧为 W,则它提供 2 ...
- Codeforces Global Round 11 A. Avoiding Zero(前缀和)
题目链接:https://codeforces.com/contest/1427/problem/A 题意 将 \(n\) 个数重新排列使得不存在为 \(0\) 的前缀和. 题解 计算正.负前缀和,如 ...
- Codeforces Global Round 11 C. The Hard Work of Paparazzi (DP)
题意:有\(r\)X\(r\)的网格图,有\(n\)位名人,会在\(t_i\)时出现在\((x_i,y_i)\),如果过了\(t_i\)名人就会消失,从某一点走到另外一点需要花费的时间是它们之间的曼哈 ...
- Codeforces Global Round 2 部分题解
F.Niyaz and Small Degrees 挺sb的一题,为什么比赛时只过了4个呢 考虑当\(x\)固定的时候怎么做.显然可以树形DP:设\(f_{u,i=0/1}\)表示只考虑\(u\)子树 ...
随机推荐
- Java HashMap源码
http://blog.csdn.net/qq_27093465/article/details/52207135 http://blog.csdn.net/qq_27093465/article/d ...
- Codeforces Round #669 (Div. 2)A-C题解
A. Ahahahahahahahaha 题目:http://codeforces.com/contest/1407/problem/A 题解:最多进行n/2的操作次数,我们统计这n个数中1的个数,是 ...
- 剑指 Offer 55 - I. 二叉树的深度
题目描述 输入一棵二叉树的根节点,求该树的深度.从根节点到叶节点依次经过的节点(含根.叶节点)形成树的一条路径,最长路径的长度为树的深度. 例如: 给定二叉树 [3,9,20,null,null,15 ...
- 20190925-02配置redis服务在后台启动 000 023
多端口要加 -p 可以进入指定端口
- Eclipse插件打开编辑器
今天终于可以闲一天,想来想去就乱写点东西吧,说不定对有些新人有点帮助呢-_- 用Eclipse API的方式来打开编辑器,可能对任何一个插件开发者都不是很陌生的操作了.但是,还是建议你忍着看一下,全当 ...
- leetcode刷题-71简化路径
题目 以 Unix 风格给出一个文件的绝对路径,你需要简化它.或者换句话说,将其转换为规范路径. 在 Unix 风格的文件系统中,一个点(.)表示当前目录本身:此外,两个点 (..) 表示将目录切换到 ...
- MySQL关于useSSL的问题,会弹出警告
我在手动配置dbcp时,执行数据库相关的操作时,报错以下: Fri Aug 28 21:10:19 CST 2020 WARN: Establishing SSL connection without ...
- top、ps -ef、ps aux的区别及内容详解
1.top和ps的区别 ps是静态查看进程--------top是动态(持续监控)进程 ps只是查看进程-----------top还可以监视系统性能,如平均负载,cpu和内存的消耗 2.ps -ef ...
- 用友yonsuite产品二开之简单的yonsql查询小工具
和以往的用友产品不同,yonsuite产品开发了低代码平台,满足客户的个性化开发需求.嗯~,一句话不知当讲不当讲,那就讲:所谓低代码平台就是开发不想用实施不会用系列.让我一个开发感受到了憋屈.
- 新手接触springboot
新手使用springboot或者说,刚接触java行业,有些不明白的就是项目的架构是怎么样的,我今天在这儿稍微整理了一下 有些新手可能在想,springboot是怎么解决最原始的增-删-改-查, 快速 ...