题目戳我

\(\text{Solution:}\)

树上启发式合并,是对普通暴力的一种优化。

考虑本题,最暴力的做法显然是暴力统计每一次的子树,为了避免其他子树影响,每次统计完子树都需要清空其信息。

但是,如果我们先对非\(x\)的节点进行统计,最后统计\(x\)然后合并其他节点的信息,那么,\(x\)的统计信息就没有必要被删掉。

那么显然地,\(x\)的子树越大越好。

于是,自然想到轻重链剖分,并将\(x\)设置为其重儿子。于是,算法模型如下:

  • 对所有非重儿子进行统计并清空其所记录的统计信息。

  • 对重儿子进行统计并保留其信息。

  • 暴力将其他儿子的信息合并到重儿子上,得到当前子树的信息。

根据树链剖分的性质,一个点到根的路径上的轻边条数不超过\(\log n\)条,而一个节点只有其祖先遇到轻边的时候才会被统计一次。

所以复杂度为\(O(n\log n).\)

关于这题 直接安装上述算法流程进行暴力统计即可。

关于一点对树剖性质的证明:每次经过一条轻边,其子树大小最少会变成原来的一半,所以轻边条数是\(O(\log n)\)的。

#include<bits/stdc++.h>
using namespace std;
const int MAXN=3e5+10;
typedef long long ll;
int son[MAXN],head[MAXN],n,tot,siz[MAXN];
int vis[MAXN],cnt[MAXN],col[MAXN],Mx,Son;
vector<int>v[MAXN];
ll sum,ans[MAXN];
void dfs(int x,int fa){
siz[x]=1;
for(int i=0;i<v[x].size();++i){
int j=v[x][i];
if(j==fa)continue;
dfs(j,x);siz[x]+=siz[j];
if(siz[j]>siz[son[x]])son[x]=j;
}
}
void add(int x,int fa,int val){
cnt[col[x]]+=val;
if(cnt[col[x]]>Mx)Mx=cnt[col[x]],sum=col[x];
else if(cnt[col[x]]==Mx)sum+=col[x]*1ll;
for(int i=0;i<v[x].size();++i){
int j=v[x][i];
if(j==fa||j==Son)continue;
add(j,x,val);
}
}
void dfs2(int x,int fa,int opt){
for(int i=0;i<v[x].size();++i){
int j=v[x][i];
if(j==fa)continue;
if(j!=son[x])dfs2(j,x,0);
}
if(son[x])dfs2(son[x],x,1),Son=son[x];
add(x,fa,1);Son=0;
ans[x]=sum;
if(!opt)add(x,fa,-1),sum=Mx=0;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i)scanf("%d",col+i);
for(int i=1;i<n;++i){
int x,y;
scanf("%d%d",&x,&y);
v[x].push_back(y);v[y].push_back(x);
}
dfs(1,0);dfs2(1,0,0);
for(int i=1;i<=n;++i)printf("%I64d ",ans[i]);
puts("");
return 0;
}

【学习笔记/题解】树上启发式合并/CF600E Lomsat gelral的更多相关文章

  1. 树上启发式合并(dsu on tree)学习笔记

    有丶难,学到自闭 参考的文章: zcysky:[学习笔记]dsu on tree Arpa:[Tutorial] Sack (dsu on tree) 先康一康模板题吧:CF 600E($Lomsat ...

  2. dsu on tree 树上启发式合并 学习笔记

    近几天跟着dreagonm大佬学习了\(dsu\ on\ tree\),来总结一下: \(dsu\ on\ tree\),也就是树上启发式合并,是用来处理一类离线的树上询问问题(比如子树内的颜色种数) ...

  3. dsu on tree[树上启发式合并学习笔记]

    dsu on tree 本质上是一个 启发式合并 复杂度 \(O(n\log n)\) 不支持修改 只能支持子树统计 不能支持链上统计- 先跑一遍树剖的dfs1 搞出来轻重儿子- 求每个节点的子树上有 ...

  4. 【CF600E】Lomset gelral 题解(树上启发式合并)

    题目链接 题目大意:给出一颗含有$n$个结点的树,每个节点有一个颜色.求树中每个子树最多的颜色的编号和. ------------------------- 树上启发式合并(dsu on tree). ...

  5. CF EDU - E. Lomsat gelral 树上启发式合并

    学习:http://codeforces.com/blog/entry/44351 E. Lomsat gelral 题意: 给定一个以1为根节点的树,每个节点都有一个颜色,问每个节点的子树中,颜色最 ...

  6. Codeforces 600E - Lomsat gelral(树上启发式合并)

    600E - Lomsat gelral 题意 给出一颗以 1 为根的树,每个点有颜色,如果某个子树上某个颜色出现的次数最多,则认为它在这课子树有支配地位,一颗子树上,可能有多个有支配的地位的颜色,对 ...

  7. [Codeforces600E] Lomsat gelral(树上启发式合并)

    [Codeforces600E] Lomsat gelral(树上启发式合并) 题面 给出一棵N个点的树,求其所有子树内出现次数最多的颜色编号和.如果多种颜色出现次数相同,那么编号都要算进答案 N≤1 ...

  8. 神奇的树上启发式合并 (dsu on tree)

    参考资料 https://www.cnblogs.com/zhoushuyu/p/9069164.html https://www.cnblogs.com/candy99/p/dsuontree.ht ...

  9. dsu on tree (树上启发式合并) 详解

    一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了 1.前置技能 1.链式前向星(vector 建图) 2.dfs 建树 3.剖分轻重链,轻重儿子 重儿子 一个结点的所有 ...

随机推荐

  1. 痞子衡嵌入式:导致串行NOR Flash在i.MXRT下无法正常下载/启动的常见因素之SFDP

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是导致串行NOR Flash在i.MXRT下无法正常下载/启动的常见因素之SFDP. i.MXRT系列MCU发布已两年多了,基于i.MXR ...

  2. 虚拟机VmWare打开报错,错误提示:VMware Authorization Service is not running!

    作者:程序员小冰,CSDN博客:http://blog.csdn.net/qq_21376985 QQ986945193 微博:http://weibo.com/mcxiaobing 说明:打开我的虚 ...

  3. Java HashMap源码

    http://blog.csdn.net/qq_27093465/article/details/52207135 http://blog.csdn.net/qq_27093465/article/d ...

  4. 时间选择器 element

    <el-date-picker type="datetime" placeholder="选择上线日期" :picker-options="st ...

  5. stack 数据结构

    栈定义 栈:后进先出(永远从栈顶取元素)LIFO last-in-first-out   栈实现 class Stack { constructor() { this.items = [] this. ...

  6. Python实践项目2

    #南昌理工学院人工智能学院实验室WORKSHOP实践项目 import time import random SCRIPT_NPC_SCHOOL_SISTER = ['你好!', '你好!', '你是 ...

  7. CentOS 7 安装部署 cassandra作为kairosdb的数据存储

    环境 Centos 7.4 java 1.8.0 安装步骤 java yum -y install java-1.8.0-openjdk* cassandra wget https://mirrors ...

  8. 不用写代码也能做表单 —— 加载meta即可

    做增删改查要写多少代码? 一个表单一套代码,十个表单十套代码吗? 我这么懒,怎么会写这么多代码? 我想做到:即使一百个表单也只需要一套代码(而且不需要复制粘贴).实现多个表单,只需要加载不同的meta ...

  9. C/C++ 宏操作小技巧

    Abstract 之前写了一个非常mini的log库(也不算库把,自己瞎jb写的),里面几乎都是宏的实现.这里打算趁热打铁,把自己知道的几下子都贴出来,后续如果有新的收获会更新这个博文. 文笔拙劣,主 ...

  10. Kubernetes中的存储(六)

    一.ConfigMap 1,介绍 ConfigMap 功能在 Kuberbetes 1.2 版本中引入,许多应用程序会从配置文件.命令行参数或环境变量中读取配置信息.ConfigMap API 给我们 ...