Linux 网络编程的5种IO模型:信号驱动IO模型

背景

上一讲 Linux 网络编程的5种IO模型:多路复用(select/poll/epoll) 我们讲解了多路复用等方面的知识,以及有关例程。

这一讲我们来看 信号驱动IO 模型。

介绍

情景引入:

在信号驱动IO模型中,当用户线程发起一个IO请求操作,会给对应的socket注册一个信号函数,然后用户线程会继续执行,当内核数据就绪时会发送一个信号给用户线程,用户线程接收到信号之后,便在信号函数中调用IO读写操作来进行实际的IO请求操作。这个一般用于UDP中,对TCP套接口几乎是没用的,原因是该信号产生得过于频繁,并且该信号的出现并没有告诉我们发生了什么事情

%% 时序图
sequenceDiagram
title : 信号驱动IO模型
participant application
participant kernel

Note right of application: 应用程序调用系统调用

application ->> kernel: signaction
kernel ->> application: 返回

kernel ->> application: 递交SIGIO信号
application ->> application : 信号处理

application ->> kernel : recvfrom

kernel ->> kernel: 准备好数据,拷贝到用户空间
kernel ->> application: 拷贝完成,返回成功

在UDP上,SIGIO信号会在下面两个事件的时候产生:

1 数据报到达套接字

2 套接字上发生错误

因此我们很容易判断SIGIO出现的时候,如果不是发生错误,那么就是有数据报到达了。

而在TCP上,由于TCP是双工的,它的信号产生过于频繁,并且信号的出现几乎没有告诉我们发生了什么事情。因此对于TCP套接字,SIGIO信号是没有什么使用的。

有关函数

#include <signal.h>

int sigaction(int signum, const struct sigaction *act,
struct sigaction *oldact);

关于有关内容的讲解,请参考:Linux 系统编程 学习:进程间通信-Unix IPC-信号

例程

这对例程是不太规范的,因为有BUG。但因为这种消息模型用的比较少所以我就不改了。

server.c

#include <stdio.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <fcntl.h> int listenfd1;
volatile int read_flag = 0;
static char buf[256] = { 0 };
void do_sigio(int sig)
{
struct sockaddr_in cli_addr;
int clifd, clilen;
read_flag = 1; memset(buf, 0, sizeof(buf));
recvfrom(listenfd1, buf, sizeof(buf), 0, (struct sockaddr *)&cli_addr, &clilen);
printf("Listenfd1 Message %s \n", buf);
perror("recvfrom");
sendto(listenfd1, "Reply", sizeof("Reply"),0, (struct sockaddr *)&cli_addr, sizeof(cli_addr));
perror("sendto");
printf("sigio end\n");
read_flag = 0;
} int main(int argc, char *argv[])
{
//绑定监听7779端口的fd
struct sockaddr_in serv_addr;
listenfd1 = socket(AF_INET, SOCK_DGRAM, 0); bzero((char *) &serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(7779);
serv_addr.sin_addr.s_addr = INADDR_ANY; struct sigaction sigio_action;
memset(&sigio_action, 0, sizeof(sigio_action));
sigio_action.sa_flags = 0;
sigio_action.sa_handler = do_sigio;
sigaction(SIGIO, &sigio_action, NULL); fcntl(listenfd1, F_SETOWN, getpid());
int flags;
flags = fcntl(listenfd1, F_GETFL, 0);
flags |= O_ASYNC ;//| O_NONBLOCK;
fcntl(listenfd1, F_SETFL, flags); bind(listenfd1, (struct sockaddr *) &serv_addr, sizeof(serv_addr)); while(1)
{
sleep(2);
}
close(listenfd1); return 0; }

client.c

#include <stdio.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <string.h>
#include <unistd.h> int main(int argc, char* argv[])
{
int socketfd;
socklen_t n;
socketfd = socket(AF_INET, SOCK_DGRAM, 0); struct sockaddr_in serv_addr;
struct sockaddr_in addr; bzero((char *)&serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(7779); char buf[64] = {0};
//write(socketfd, "client message", sizeof("client message"));
sendto(socketfd, "client message", sizeof("client message"),0, (struct sockaddr *)&serv_addr, sizeof(serv_addr)); memset(buf, 0, sizeof(buf));
//read(socketfd, buf, sizeof(buf));
recvfrom(socketfd, buf, sizeof(buf), 0, (struct sockaddr *)&serv_addr, &n);
printf("%u %s\n",n ,buf);
return 0; }

附录:异步通知

ref :异步通知

注意:异步通知只有SIGIO信号,没有别的信号可用,其他各种信号在app空间可以任意使用.

通过使用异步通知,应用程序可以在数据可用时收到一个信号,而无需不停地轮询。

启用步骤:

(1)它们指定一个进程作为文件的拥有者:使用 fcntl 系统调用发出 F_SETOWN 命令,这个拥有者进程的 ID 被保存在 filp->f_owner。目的:让内核知道信号到达时该通知哪个进程。

(2)使用 fcntl 系统调用,通过 F_SETFL 命令设置 FASYNC 标志。

内核操作过程

1.F_SETOWN被调用时filp->f_owner被赋值。

  1. 当 F_SETFL 被执行来打开 FASYNC, 驱动的 fasync 方法被调用.这个标志在文件被打开时缺省地被清除。

  2. 当数据到达时,所有的注册异步通知的进程都会被发送一个 SIGIO 信号。

Linux 提供的通用方法是基于一个数据结构和两个函数,定义在。

数据结构:

 struct fasync_struct{
int magic;
int fa_fd;
struct fasync_struct *fa_next;/* singly linked list */
struct file *fa_file;
};

驱动调用的两个函数的原型:

int fasync_helper(int fd,structfile*filp,int mode, struct fasync_struct**fa);
void kill_fasync(struct fasync_struct**fa,int sig, int band);

当一个打开的文件的FASYNC标志被修改时,调用 fasync_helper 来从相关的进程列表中添加或去除文件。除了最后一个参数, 其他所有参数都时被提供给 fasync 方法的相同参数并被直接传递。 当数据到达时,kill_fasync 被用来通知相关的进程,它的参数是被传递的信号(常常是 SIGIO)和 band(几乎都是 POLL_IN)。

这是 scullpipe 实现 fasync 方法的:

 staticint scull_p_fasync(int fd,struct file*filp,int mode)
{
struct scull_pipe *dev = filp->private_data;
return fasync_helper(fd, filp, mode,&dev->async_queue);
}

当数据到达, 下面的语句必须被执行来通知异步读者. 因为对 sucllpipe 读者的新数据通过一个发出 write 的进程被产生, 这个语句出现在 scullpipe 的 write 方法中:

 if (dev->async_queue)  kill_fasync(&dev->async_queue, SIGIO, POLL_IN); /* 注意, 一些设备也针对设备可写而实现了异步通知,在这个情况,kill_fasnyc 必须以 POLL_OUT 模式调用.*/

当文件被关闭时必须 调用fasync 方法,来从活动的异步读取进程列表中删除该文件。尽管这个调用仅当 filp->f_flags 被设置为 FASYNC 时才需要,但不管什么情况,调用这个函数不会有问题,并且是普遍的实现方法。 以下是 scullpipe 的 release 方法的一部分:

 /* remove this filp from the asynchronously notified filp's */ scull_p_fasync(-1, filp, 0);

异步通知使用的数据结构和 struct wait_queue 几乎相同,因为他们都涉及等待事件。区别异步通知用 struct file 替代 struct task_struct. 队列中的 file 用获取 f_owner, 一边给进程发送信号。

Linux 网络编程的5种IO模型:信号驱动IO模型的更多相关文章

  1. Linux 网络编程的5种IO模型:多路复用(select/poll/epoll)

    Linux 网络编程的5种IO模型:多路复用(select/poll/epoll) 背景 我们在上一讲 Linux 网络编程的5种IO模型:阻塞IO与非阻塞IO中,对于其中的 阻塞/非阻塞IO 进行了 ...

  2. Linux 网络编程的5种IO模型:阻塞IO与非阻塞IO

    背景 整理之前学习socket编程的时候复习到了多路复用,搜索了有关资料,了解到多路复用也有局限性,本着打破砂锅问到底的精神,最终找到了关于IO模型的知识点. 在<Unix网络编程>一书中 ...

  3. Linux 网络编程的5种IO模型:异步IO模型

    Linux 网络编程的5种IO模型:异步IO模型 资料已经整理好,但是还有未竟之业:复习多路复用epoll 阅读例程, 异步IO 函数实现 背景 上一讲< Linux 网络编程的5种IO模型:信 ...

  4. 网络编程并发 多进程 进程池,互斥锁,信号量,IO模型

    进程:程序正在执行的过程,就是一个正在执行的任务,而负责执行任务的就是cpu 操作系统:操作系统就是一个协调.管理和控制计算机硬件资源和软件资源的控制程序. 操作系统的作用: 1:隐藏丑陋复杂的硬件接 ...

  5. 【网络IO系列】IO的五种模型,BIO、NIO、AIO、IO多路复用、 信号驱动IO

    前言 在上一篇文章中,我们了解了操作系统中内核程序和用户程序之间的区别和联系,还提到了内核空间和用户空间,当我们需要读取一条数据的时候,首先需要发请求告诉内核,我需要什么数据,等内核准备好数据之后 , ...

  6. 《Linux/UNIX系统编程手册》第63章 IO多路复用、信号驱动IO以及epoll

    关键词:fasync_helper.kill_async.sigsuspend.sigaction.fcntl.F_SETOWN_EX.F_SETSIG.select().poll().poll_wa ...

  7. 【死磕NIO】— 阻塞IO,非阻塞IO,IO复用,信号驱动IO,异步IO,这你真的分的清楚吗?

    通过上篇文章([死磕NIO]- 阻塞.非阻塞.同步.异步,傻傻分不清楚),我想你应该能够区分了什么是阻塞.非阻塞.异步.非异步了,这篇文章我们来彻底弄清楚什么是阻塞IO,非阻塞IO,IO复用,信号驱动 ...

  8. Linux 网络编程(IO模型)

    针对linux 操作系统的5类IO模型,阻塞式.非阻塞式.多路复用.信号驱动和异步IO进行整理,参考<linux网络编程>及相关网络资料. 阻塞模式 在socket编程(如下图)中调用如下 ...

  9. linux网络编程IO模型

    同步与异步:         同步就是一个任务的完成需要依赖另外一个任务时,只有等待被依赖的任务完成后,依赖的任务才能算完成.         异步是不需要等待被依赖的任务完成,只是通知被依赖的任务要 ...

随机推荐

  1. 单元测试框架怎么搭?快来看看新版Junit5的这些神奇之处吧!

    为什么使用JUnit5 JUnit4被广泛使用,但是许多场景下使用起来语法较为繁琐,JUnit5中支持lambda表达式,语法简单且代码不冗余. JUnit5易扩展,包容性强,可以接入其他的测试引擎. ...

  2. Python-信号量和线程池-semaphore ThreadPollExector

    信号量 其实本质上是锁,Lock是单锁,信号量是指定多把锁,也就是说通过信号量指定多个数线程可以访问相同资源,一般情况下读操作可以有多个,但写操作同时只有一个 信号量模块 semaphore # 使用 ...

  3. Python-装饰器中保留被装饰函数元数据

     函数的元数据包括哪些呢? 1. 函数名 .__name__ 2. 函数注释 .__doc__ ... 那,如何保留被装饰函数元数据,通过wraps装饰器保留被装饰函数的元数据 import time ...

  4. py004.python的逻辑运算,随机数及判断语句if,elif,else

    判断语句又称 "分支语句" if判断语句的格式: if 条件1: 条件1满足时,执行的代码 -- # 前面有缩进4个空格 elif 条件2: 条件2满足时,执行的代码 -- # 前 ...

  5. VARCHART XGantt如何计算截止日期

    甘特图从1998年的第一个商用版本开始就致力于计划编制和项目管理方面控件的研究和开发,经过20多年的积累和沉淀,目前可为软件开发商和最终用户提供最顶级的计划编制和项目管理的控件产品,帮助用户快速的整合 ...

  6. 多线程循环打印数组 -- Java笔记

    问题描述: 现有多个长度相同的数组,现要求使用多线程将数组内的数交替打印. 如: int[] ai = {1,2,3,4,5,6,7}; String[] ac = {"A",&q ...

  7. TP5隐藏入口文件

    1,进入根目录,打开public文件夹,里面有个.htaccess文件 2,将这段代码改成?s= 3,不修改该文件,想要隐藏入口文件则会报错 4,改了文件之后是 5,改了入口文件为了隐藏  .php

  8. 制作iconfont放到自己的公共组件库

    我们公司的icon是UI提供svg,我们转成iconfont. 这里就不详细说明怎么制作svg,可以上网搜一下,https://www.iconfont.cn/help/detail?spm=a313 ...

  9. 多测师讲解自动化测试 _RF自定义关键字_高级讲师肖sir

    RF自定义关键字 在rf中叫关键字 在python中就叫做函数 或实例方法 我们自己可以写自定义关键字 自己创建一个库===库里面去创建模块===模块里面创建类和实例方法==>rf导入和引用 库 ...

  10. 经验分享:对于刚接触开发的大学生,怎么在Windows查看与关闭端口占用方法?

      前言:做开发有的时候会发现某一端口被占用了而导致不能正常启动服务,这个时候就需要把这个端口释放掉了,步骤如下 观察报错信息提示,了解是哪个端口号被占用,以8700为例 按win+r输入cmd打开控 ...