Navigation Nightmare

Farmer John's pastoral neighborhood has N farms (2 <= N <= 40,000), usually numbered/labeled 1..N. A series of M (1 <= M < 40,000) vertical and horizontal roads each of varying lengths (1 <= length <= 1000) connect the farms. A map of these farms might look something like the illustration below in which farms are labeled F1..F7 for clarity and lengths between connected farms are shown as (n):

           F1 --- (13) ---- F6 --- (9) ----- F3

| |

(3) |

| (7)

F4 --- (20) -------- F2 |

| |

(2) F5

|

F7

Being an ASCII diagram, it is not precisely to scale, of course.

Each farm can connect directly to at most four other farms via roads that lead exactly north, south, east, and/or west. Moreover, farms are only located at the endpoints of roads, and some farm can be found at every endpoint of every road. No two roads cross, and precisely one path 
(sequence of roads) links every pair of farms.

FJ lost his paper copy of the farm map and he wants to reconstruct it from backup information on his computer. This data contains lines like the following, one for every road:

There is a road of length 10 running north from Farm #23 to Farm #17 
There is a road of length 7 running east from Farm #1 to Farm #17 
...

As FJ is retrieving this data, he is occasionally interrupted by questions such as the following that he receives from his navigationally-challenged neighbor, farmer Bob:

What is the Manhattan distance between farms #1 and #23?

FJ answers Bob, when he can (sometimes he doesn't yet have enough data yet). In the example above, the answer would be 17, since Bob wants to know the "Manhattan" distance between the pair of farms. 
The Manhattan distance between two points (x1,y1) and (x2,y2) is just |x1-x2| + |y1-y2| (which is the distance a taxicab in a large city must travel over city streets in a perfect grid to connect two x,y points).

When Bob asks about a particular pair of farms, FJ might not yet have enough information to deduce the distance between them; in this case, FJ apologizes profusely and replies with "-1".

Input

* Line 1: Two space-separated integers: N and M

* Lines 2..M+1: Each line contains four space-separated entities, F1,

F2, L, and D that describe a road. F1 and F2 are numbers of

two farms connected by a road, L is its length, and D is a

character that is either 'N', 'E', 'S', or 'W' giving the

direction of the road from F1 to F2. * Line M+2: A single integer, K (1 <= K <= 10,000), the number of FB's

queries * Lines M+3..M+K+2: Each line corresponds to a query from Farmer Bob

and contains three space-separated integers: F1, F2, and I. F1

and F2 are numbers of the two farms in the query and I is the

index (1 <= I <= M) in the data after which Bob asks the

query. Data index 1 is on line 2 of the input data, and so on.

Output

* Lines 1..K: One integer per line, the response to each of Bob's

queries. Each line should contain either a distance

measurement or -1, if it is impossible to determine the

appropriate distance. 题目:回答你一连串牧场之间的距离,在一连串回答中,中间穿插一些问题,问能不能确定x,y之间的距离,可以得话输出答案,不可以则输出'-1'。
思路:我们容易想到用坐标处理“曼哈顿距离”,带权并查集有类似向量的性质,刚好和坐标可以对应,我们就可以用带权并查集来处理该问题,
每个点两个权值,分别表示x坐标和y坐标,初始化为(0,0),然后四个方向也可以用坐标表示,这样题目就可以解决了。
 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <vector>
#include <cmath> using namespace std; #define ll long long
#define pb push_back
#define fi first
#define se second const int N = 4e4 + ;
struct node
{
int rt, x, y;
}fa[N];
struct info
{
int x, y, d;
char op;
};
struct que
{
int x, y, inx;
};
vector<info > Info;
vector<que > Que;
int n, m, q; int Find(int x){
if(fa[x].rt == x) return x;
else{
int tmp = fa[x].rt;
fa[x].rt = Find(tmp);
fa[x].x += fa[tmp].x;
fa[x].y += fa[tmp].y;
return fa[x].rt;
}
} void Union(int x, int y, int dx, int dy){
int fax = Find(x);
int fay = Find(y); if(fax != fay){
fa[fay].rt = fax;
fa[fay].x = fa[x].x + dx - fa[y].x;
fa[fay].y = fa[x].y + dy - fa[y].y;
}
} void solve()
{
//while(~scanf("%d%d", &n, &m)){
scanf("%d%d", &n, &m);
for(int i = ; i <= n; ++i){
fa[i].rt = i;
fa[i].x = fa[i].y = ;
}
Info.clear();
Que.clear(); int u, v, d, inx;
char op[];
for(int i = ; i <= m; ++i){
scanf("%d%d%d%s", &u, &v, &d, op);
Info.pb({u, v, d, op[]});
}
scanf("%d", &q);
for(int i = ; i <= q; ++i){
scanf("%d%d%d", &u, &v, &inx);
Que.pb({u, v, inx});
}
//sort(Que.begin(), Que.end()); vector<int > ans;
int j = ;
for(int i = ; i < q; ++i){ while(j < Que[i].inx){
int dx = ;
int dy = ;
if(Info[j].op == 'E') dx = Info[j].d;
else if(Info[j].op == 'W') dx = -Info[j].d;
else if(Info[j].op == 'N') dy = Info[j].d;
else if(Info[j].op == 'S') dy = -Info[j].d; Union(Info[j].x, Info[j].y, dx, dy);
j++;
} int fax = Find(Que[i].x);
int fay = Find(Que[i].y);
if(fax != fay) ans.pb(-);
else{
int dx = fa[Que[i].x].x - fa[Que[i].y].x;
int dy = fa[Que[i].x].y - fa[Que[i].y].y;
ans.pb(abs(dx) + abs(dy));
}
} //for(int o = 0; o < l; ++o) printf("ans = %d\n", ans[o]);
for(int o = ; o < q; ++o) printf("%d\n", ans[o]);
//}
} int main()
{ solve(); return ;
}
 

Navigation Nightmare POJ - 1984的更多相关文章

  1. Navigation Nightmare POJ - 1984 带权并查集

    #include<iostream> #include<cmath> #include<algorithm> using namespace std; ; // 东 ...

  2. 【POJ 1984】Navigation Nightmare(带权并查集)

    Navigation Nightmare Description Farmer John's pastoral neighborhood has N farms (2 <= N <= 40 ...

  3. POJ 1984 Navigation Nightmare 【经典带权并查集】

    任意门:http://poj.org/problem?id=1984 Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K To ...

  4. POJ 1984 Navigation Nightmare 带全并查集

    Navigation Nightmare   Description Farmer John's pastoral neighborhood has N farms (2 <= N <= ...

  5. POJ 1984 Navigation Nightmare (数据结构-并检查集合)

    Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 4072   Accepted: 1 ...

  6. POJ1984:Navigation Nightmare(带权并查集)

    Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 7871   Accepted: 2 ...

  7. POJ1984 Navigation Nightmare —— 种类并查集

    题目链接:http://poj.org/problem?id=1984 Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K T ...

  8. BZOJ_3362_[Usaco2004 Feb]Navigation Nightmare 导航噩梦_并查集

    BZOJ_3362_[Usaco2004 Feb]Navigation Nightmare 导航噩梦_并查集 Description     农夫约翰有N(2≤N≤40000)个农场,标号1到N,M( ...

  9. poj 1984 并查集

    题目意思是一个图中,只有上下左右四个方向的边.给出这样的一些边, 求任意指定的2个节点之间的距离. 就是看不懂,怎么破 /* POJ 1984 并查集 */ #include <stdio.h& ...

随机推荐

  1. [C#.NET 拾遗补漏]05:操作符的几个骚操作

    阅读本文大概需要 1.5 分钟. 大家好,这是极客精神[C#.NET 拾遗补漏]专辑的第 5 篇文章,今天要讲的内容是操作符. 操作符的英文是 Operator,在数值计算中习惯性的被叫作运算符,所以 ...

  2. Spting:基于注解的组件化管理

    @Component,@Controller(控制层),@Service(业务层),@Repository(持久层) 以上四个注解的功能完全相同,不过在实际开发中,要在不同功能的类上加上响应的注解 1 ...

  3. min_25筛入门

    目录 1.什么是min_25筛 2.前置知识 2.1.数论函数 2.2.埃拉托色尼筛 2.3.欧拉筛 3.min_25筛 3.1.计算质数贡献 3.2.计算总贡献 3.3.实现 4.例题 4.1.[L ...

  4. 【JMeter_11】JMeter逻辑控制器__Switch控制器<Switch Controller>

    Switch控制器<Switch Controller> 业务逻辑: 取得switch value的值,通过对节点下所有取样器.逻辑控制器的下标.名称匹配去执行,switch value的 ...

  5. PageHelper支持GreenPlum

    greenplum是pivotal在postgresql的基础上修改的一个数据库,语法和postgresql通用.使用PageHelper做分页插件的时候,发现目前没有针对greenplum做支持,但 ...

  6. 绕过PowerShell执行策略方法总结

    默认情况下,PowerShell配置为阻止Windows系统上执行PowerShell脚本.对于渗透测试人员,系统管理员和开发人员而言,这可能是一个障碍,但并非必须如此. 什么是PowerShell执 ...

  7. Java并发编程-深入Java同步器AQS原理与应用-线程锁必备知识点

    并发编程中我们常会看到AQS这个词,很多朋友都不知道是什么东东,博主经过翻阅一些资料终于了解了,直接进入主题. 简单介绍 AQS是AbstractQueuedSynchronizer类的缩写,这个不用 ...

  8. 观察者模式(Observer Pattern)(二):HeadFirst中的气象站的实现

    1 观察者模式的原理,首先由一个主题,当主题发送变化的时候,通知该主题的订阅者 按照上面的分析我们来进行设计 1.抽象主题Subject public interface Subject { publ ...

  9. 2020年IDEA破解激活码永久

    我想很多做开发的小伙伴和小编一样,和往常一样开机搬砖. 打开idea的时候,会收到一个个提示,也是idea许可证过期啦,需要重新激活! 那怎么办呢?我最近发现了一个相对稳定的激活码 . 亲测可用.现在 ...

  10. day17—max, map, reduce, filter, zip 函数的使用

    一.max 函数 l=[3,2,100,999,213,1111,31121,333] print(max(l)) # dic={'k1':10,'k2':100,'k3':30} print(max ...