题目



思路

很明显的dp就是不会跑啊,所以最后dfs救了一下场,不出所料,最后果然T了,现在说一下正解。

  • 为什么说是奇怪dp呢,这道题的dp数组是布尔型的,f[i][j][k]代表在到第i行第j列之前是否能组成k,1(能)或者0(不能);
  • 这道题还有一个恶心的地方,就是原始数的存放,可以分n以及n前和n后两个部分来存
  • 为了f数组的第三维不为负数(RE欢迎你),我们进行以下操作
  • 将存入的数都换为正数,因为对于每一位都有加减两种操作
  • 对于每一行,维护一个最大值Max,求\(tot=\sum_{i=1}^{2*n-1} Max_i\),然后在第三维的基础值为tot(统一上移tot位)
  • 然后就是dp了
for(int i=2*n-1;i>n;i--){
for(int j=1;j<=2*n-i;j++){
for(int k=0;k<=2*tot;k++){
if(dp[i][j][k]){
now=k+a[i][j];
if(judge(now))dp[i-1][j][now]=dp[i-1][j+1][now]=1;
now=k-a[i][j];
if(judge(now))dp[i-1][j][now]=dp[i-1][j+1][now]=1;
}
}
}
}
for(int i=n;i>=1;i--){
for(int j=1;j<=i;j++){
for(int k=0;k<=2*tot;k++){
if(dp[i][j][k]){
now=k+a[i][j];
dp[i-1][j][now]=dp[i-1][j-1][now]=1;
now=k-a[i][j];
dp[i-1][j][now]=dp[i-1][j-1][now]=1;
}
}
}
}

分两部分,注意f存的是i行j列>>前<<能否组成k的情况!!如果可以,则就对当前状态进行转移,加或者减

代码

#include<bits/stdc++.h>
using namespace std;
int a[100][60];
int dp[100][60][6005];
int n,tot,Max;
bool judge(int x){
if(x<0 || x>2*tot)return 0;
return 1;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
int Max=0;
for(int j=1;j<=i;j++){
scanf("%d",&a[i][j]);
a[i][j]=abs(a[i][j]);
Max=max(a[i][j],Max);
}
tot+=Max;
}
for(int i=1;i<n;i++){
int Max=0;
for(int j=1;j<=n-i;j++){
scanf("%d",&a[n+i][j]);
a[n+i][j]=abs(a[n+i][j]);
Max=max(a[n+i][j],Max);
}
tot+=Max;
}
dp[2*n-1][1][tot]=1;
int now=0;
for(int i=2*n-1;i>n;i--){
for(int j=1;j<=2*n-i;j++){
for(int k=0;k<=2*tot;k++){
if(dp[i][j][k]){
now=k+a[i][j];
if(judge(now))dp[i-1][j][now]=dp[i-1][j+1][now]=1;
now=k-a[i][j];
if(judge(now))dp[i-1][j][now]=dp[i-1][j+1][now]=1;
}
}
}
}
for(int i=n;i>=1;i--){
for(int j=1;j<=i;j++){
for(int k=0;k<=2*tot;k++){
if(dp[i][j][k]){
now=k+a[i][j];
dp[i-1][j][now]=dp[i-1][j-1][now]=1;
now=k-a[i][j];
dp[i-1][j][now]=dp[i-1][j-1][now]=1;
}
}
}
}
int ans=0x7f7f7f7f;
for(int i=0;i<=2*tot;i++){
if(dp[0][0][i]){
ans=min(ans,abs(i-tot));
}
if(dp[0][1][i]){
ans=min(ans,abs(i-tot));
}
}
printf("%d\n",ans);
}

奇怪DP之步步为零的更多相关文章

  1. 集训DP复习整理

    DP复习 集训%你赛2:测绘(审题DP) 经过2000+个小时的努力终于把这道题做出来的蒟蒻通 分析: 这道题我一直没做出来的原因就是因为我太蒟了题面看不懂,题面读懂了,其实不是特别难. 题目翻译: ...

  2. GDOI2018 爆零记,Challenge Impossibility

    蒟蒻的GDOI又双叒叕考挂啦...... Day 0 && Day -1 学校月考,貌似考的还不错? 然而考完试再坐船去中山实在是慢啊......晚上10点才到酒店 wifi差评... ...

  3. 方阵里面的dp

    打了一场luogu的信心赛,惊讶地发现我不会T2,感觉像这样在矩阵里面的dp看起来很套路的样子,但是仔细想想还是有很多需要注意的细节. 又想到之前貌似也考过一些类似的题目 然而我并没有改 ,于是打算补 ...

  4. HDU-1114(背包DP)

    Piggy-Bank Problem Description Before ACM can do anything, a budget must be prepared and the necessa ...

  5. hdu1114Piggy-Bank(DP完全背包)

    题意:在ACM可以做任何事情,必须准备和预算获得必要的财政支持.这次行动的主要收入来自不可逆绑定金钱(IBM).背后的想法很简单.每当一些ACM成员有任何小的钱,他把所有的硬币和成小猪银行抛出.你知道 ...

  6. BZOJ3864: Hero meet devil【dp of dp】

    Description There is an old country and the king fell in love with a devil. The devil always asks th ...

  7. DP专题·三(01背包+完全背包)

    1.hdu 2126 Buy the souvenirs 题意:给出若干个纪念品的价格,求在能购买的纪念品的数目最大的情况下的购买方案. 思路:01背包+记录方案. #include<iostr ...

  8. B. Once Again... 解析(思維、DP、LIS、矩陣冪)

    Codeforce 582 B. Once Again... 解析(思維.DP.LIS.矩陣冪) 今天我們來看看CF582B 題目連結 題目 給你一個長度為\(n\)的數列\(a\),求\(a\)循環 ...

  9. P4644 [Usaco2005 Dec]Cleaning Shifts 清理牛棚

    P4644 [Usaco2005 Dec]Cleaning Shifts 清理牛棚 你有一段区间需要被覆盖(长度 <= 86,399) 现有 \(n \leq 10000\) 段小线段, 每段可 ...

随机推荐

  1. 【CSS】电脑、移动端公用样式

    电脑端: /* Public */ @charset "utf-8"; html, body, div, p, ul, ol, li, dl, dt, dd, h1, h2, h3 ...

  2. 关于nginx的源码安装方式

    Nginx(engine x)是一款是由俄罗斯的程序设计师Igor Sysoev所开发高性能的 Web和 反向代理 服务器, 也是一个 IMAP/POP3/SMTP 代理服务器.在高连接并发的情况下, ...

  3. 基本的bash shell 命令

    1.遍历目录:cd 2.显示目录列表:ls 3.创建文件:touch 4.复制文件:cp 5.链接文件:ln 6.重命名文件:mv 7.删除文件:rm 8.创建目录:mkdir 9.删除目录:rmdi ...

  4. 我们是如何做DevOps的?

    一.DevOps的理解 DevOps的概念理解 DevOps 的概念在软件开发行业中逐渐流行起来.越来越多的团队希望实现产品的敏捷开发,DevOps 使一切成为可能.有了 DevOps ,团队可以定期 ...

  5. pytorch入门2.0构建回归模型初体验(数据生成)

    pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验( ...

  6. css3中的@font-face你真的了解吗

    css3中的自定义字体方法@font-face @font-face属性可以让我们自定义网站字体属性,然后引用到想要应用该字体的元素上. 基本语法: @font-face { font-family: ...

  7. 将反向传播讲解的深入透彻的神一样的文章(numpy实现人工神经网络)

    为了完成机器学习课的项目,规定不许调tensorflow,pytorch这些包.可是要手工实现一个可训练的神经网络是非常困难的一件事,难点无他,就在于反向传播的实现.这不,我在网上发现了这篇文章.怎么 ...

  8. python生成批量格式化字符串

    在学习tensorflow管道化有关操作时,有一个操作是先生成一个文件名队列.在书上使用了这样的代码: filenames = ['test%d.txt'%i for in in range(1,4) ...

  9. Java 多线程基础(六)线程等待与唤醒

    Java 多线程基础(六)线程等待与唤醒 遇到这样一个场景,当某线程里面的逻辑需要等待异步处理结果返回后才能继续执行.或者说想要把一个异步的操作封装成一个同步的过程.这里就用到了线程等待唤醒机制. 一 ...

  10. vulstack红队评估(二)

    一.环境搭建: 1.根据作者公开的靶机信息整理: 靶场统一登录密码:1qaz@WSX     2.网络环境配置: ①Win2008双网卡模拟内外网: 外网:192.168.1.80,桥接模式与物理机相 ...