算法图解:Python笔记代码
二分查找
选择排序
递归
快速排序
广度优先搜索
狄克斯特拉算法
贪婪算法
二分查找
def binary_search(lst,item):
low = 0
high = len(lst)-1 while low <= high:
mid = (high+low)//2
if item == lst[mid]:
return mid
if item < lst[mid]:
high = mid-1
if item > lst[mid]:
low = mid + 1
return None my_list = [1,3,5,7,9]
print(binary_search(my_list,5))
选择排序
def findsmallest(arr):
smallest = arr[0]
smallest_index = 0 for i in range(1,len(arr)):
if arr[i] < smallest:
smallest = arr[i]
smallest_index = i
return smallest_index def selection_Sort(arr):
new_arr = []
for i in range(len(arr)):
new_arr.append(arr.pop(findsmallest(arr))) # 注意pop的对象是索引
return new_arr arr = [3,1,5,2,9,1,1,0]
print(selection_Sort(arr))
递归
# 倒计时
def countdown(n):
print(n)
if n < 1:
return
countdown(n-1) # 求和
def sum_1(arr):
if arr == []:
return 0
return arr.pop(0) + sum_1(arr) def sum_2(arr):
if arr == []:
return 0
return arr[0] + sum_2(arr[1:]) arr = [1,2,3,4,5]
print(sum_1(arr)) # 阶乘
def fact(n):
if n == 1:
return 1
return n * fact(n - 1) # 计算元素个数
def count_arr(arr):
if arr == []:
return 0
return 1 + count_arr(arr[1:])
快速排序
def quick_sort(arr):
if len(arr) < 2:
return arr
else:
pivot = arr[0]
less = [i for i in arr[1:] if i <= pivot]
greater = [i for i in arr[1:] if i > pivot]
return quick_sort(less) + pivot + quick_sort(greater)
广度优先搜索
# 使用队列这种数据结构
from collections import deque # 定义图
graph = {
'you': ['alice', 'bob', 'claire'],
'bob': ['anuj', 'peggy'],
'alice': ['peggy'],
'claire': ['thom', 'jonny'],
'anuj': [],
'peggy': [],
'thom': [],
'jonny': []
} # 判断是否是芒果销售商
def person_is_seller(name):
return name[-1] == "m" # 广度优先搜索
def search(name):
# 实例化队列
search_deque = deque()
# 将某人的一度关系网加入到队列中
search_deque += graph[name]
# 初始化已检查过的人
searched = [] # 队列中存在元素时就一直搜索
while search_deque:
# 从列队中弹出第一个人,并检查
person = search_deque.popleft()
# 此人不在已检查过的列表中
if person not in searched:
# 检查是否是销售商
if person_is_seller(person):
print("%s is mango_seller" % person)
return True
else:
# 如果不是就将此人的一度关系网加入到队列中
search_deque += graph[person]
searched.append(person) return False search("you")
狄克斯特拉算法
# 创建图的散列表
graph = {
"start":{"a":6,"b":2},
"a":{"fin":1},
"b":{"a":3,"fin":5},
"fin":{}
}
# 创建开销的散列表
costs = {
"a":6,
"b":2,
"fin":float("inf")
}
# 创建存储父节点的散列表
parents = {
"a":"start",
"b":"start",
"fin": None
}
# 记录处理过的节点
processed = [] # 在未处理的节点中寻找最小开销节点
def find_lowest_cost_node(costs):
lowest_cost = float("inf")
lowest_cost_node = None
for node in costs:
cost = costs[node]
if cost < lowest_cost and node not in processed:
lowest_cost = cost
lowest_cost_node = node
return lowest_cost_node # 1、拿到起点的一度关系中的最小开销节点
node = find_lowest_cost_node(costs)
# 2、获取该节点的开销和邻居
while node is not None:
cost = costs[node]
neighbors = graph[node]
# 3、遍历邻居
for n in neighbors.keys():
# 计算该节点到邻居的开销+起点到该节点的开销,与起点直接到改点的开销比较
new_cost = cost + neighbors[n]
# 如果前者开销较小则更新改邻居节点的父节点,并更新起点到该邻居节点的开销
if new_cost < costs[n]:
parents[n] = node
costs[n] = new_cost
# 4、将当前节点标记为处理过
processed.append(node)
# 5、找出接下来要处理的节点并循环
node = find_lowest_cost_node(costs) print(processed)
print(costs)
print(parents)
贪婪算法
# 目标:选择尽可能少的电台覆盖尽可能多的州
# 方法:第一步,选择覆盖州最多的电台
# 方法:第二步,选择覆盖最多“未覆盖的州(上一步剩下的州)”的电台
# 方法:第三步,重复第二步,直到覆盖所有的州 # 需要覆盖的州
states_needed = set(["mt", "wa", "or", "id", "nv", "ut","ca", "az"]) # 电台清单
stations = {
"kone" : set(["id", "nv", "ut"]),
"ktwo" : set(["wa", "id", "mt"]),
"kthree" : set(["or", "nv", "ca"]),
"kfour" : set(["nv", "ut"]),
"kfive" : set(["ca", "az"])
} # 该集合存储最终选择的电台
final_stations = set() # 只要需要覆盖的州不为空就一直循环
while states_needed:
best_station = None
states_covered = set()
# 从电台清单中找出覆盖未覆盖州最多的电台
for station,states in stations.items():
covered = states_needed & states
if len(covered) > len(states_covered):
best_station = station
states_covered = covered # 每次确定一个最佳的电台就将其覆盖的州从总集合中减去
states_needed -= states_covered
# 没确定一个最佳电台就存在最终的电台集合中
final_stations.add(best_station) print(final_stations)
算法图解:Python笔记代码的更多相关文章
- <算法图解>读书笔记:第1章 算法简介
阅读书籍:[美]Aditya Bhargava◎著 袁国忠◎译.人民邮电出版社.<算法图解> 第1章 算法简介 1.2 二分查找 一般而言,对于包含n个元素的列表,用二分查找最多需要\(l ...
- <算法图解>读书笔记:第4章 快速排序
第4章 快速排序 4.1 分而治之 "分而治之"( Divide and conquer)方法(又称"分治术") ,是有效算法设计中普遍采用的一种技术. 所谓& ...
- Python算法——《算法图解》笔记
算法目录 二分查找 大O表示法 选择排序 递归 快速排序,分而治之(D&C) 散列表——字典 广度优先搜索——BFS Dijkstra算法 贪婪算法 二分查找 # 要求list是有序表,num ...
- <算法图解>读书笔记:第2章 选择排序
第2章 选择排序 2.1 内存的工作原理 需要将数据存储到内存时,请求计算机提供存储空间,计算机会给一个存储地址.需要存储多项数据时,有两种基本方式-数组和链表 2.2 数组和链表 2.2.1 链表 ...
- <算法图解>读书笔记:第3章 递归
第3章 递归 3.1 递归 程序调用自身的编程技巧称为递归( recursion).递归做为一种算法在程序设计语言中广泛应用. 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一 ...
- 算法图解学习笔记01:二分查找&大O表示法
二分查找 二分查找又称折半查找,其输入的必须是有序的元素列表.二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止:如果x<a[ ...
- 多元线性回归算法的python底层代码编写实现
1.对于多元线性回归算法,它对于数据集具有较好的可解释性,我们可以对比不过特征参数的输出系数的大小来判断它对数据的影响权重,进而对其中隐含的参数进行扩展和收集,提高整体训练数据的准确性. 2.多元回归 ...
- python聚类算法实战详细笔记 (python3.6+(win10、Linux))
python聚类算法实战详细笔记 (python3.6+(win10.Linux)) 一.基本概念: 1.计算TF-DIF TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库 ...
- 数据关联分析 association analysis (Aprior算法,python代码)
1基本概念 购物篮事务(market basket transaction),如下表,表中每一行对应一个事务,包含唯一标识TID,和购买的商品集合.本文介绍一种成为关联分析(association a ...
随机推荐
- jQuery.qrcode二维码插件生成网页二维码
如果是一个固定的二维码,我们只需要在网上找个地方生成图片,然后放上图片就可以了.但如果是地址不固定需要根据页面来生成的话.就有两种做法,一个是后端根据页面做一个动态的二维码.一种是前端使用插件生成. ...
- 函数式编程(__slots__)
正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性.先定义class: class Student(object): pa ...
- 一文入门Linux下gdb调试(二)
作者:良知犹存 转载授权以及围观:欢迎添加微信号:Conscience_Remains 总述 今天我们介绍一下core dump文件,Core dump叫做核心转储,它是进程运行时在突然崩溃的 ...
- vs中python包安装教程
vs安装python很简单,只需要在vs安装包中选择python就可以了,这里使用的python3.7: 如果有了解,都知道安装python包的指令:"pip install xxx&quo ...
- C - 小希的迷宫
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走.但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了 ...
- java.awt.event.MouseEvent鼠标事件的定义和使用 以及 Java Swing-JTextArea的使用
最近发现一个CSDN大佬写的Java-Swing全部组件的介绍:Java Swing 图形界面开发(目录) JTextArea 文本区域.JTextArea 用来编辑多行的文本.JTextArea 除 ...
- hdu2157 How many ways??
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission ...
- Codeforces Round #670 (Div. 2) A. Subset Mex (贪心)
题意:给你一长度为\(n\)的序列,将其分为两个集合,求两个集合中未出现的最小元素的最大值, 题解:用桶存一下每个元素的个数,两次枚举\([1,100]\),找出两个最小值即可. 代码: int t; ...
- 2.PowerShell概述
PowerShell PowerShell命令窗一般随系统带着,运行->输入:powershell,即可打开命令窗口. 命令 Powershell有诸多命令,兼容cmd命令 语法和命令 在此我推 ...
- 国产网络损伤仪 SandStorm -- 什么是链路规则?
"链路规则"是网络损伤仪SandStorm(又名弱网测试仪)里面非常重要的功能,主要用于不同仿真链路之间的选择. 如下图的所示: ...