[图论]剑鱼行动:prim
剑鱼行动
Description
给出N个点的坐标,对它们建立一个最小生成树,代价就是连接它们的路径的长度,现要求总长度最小。N的值在100以内,坐标值在[-10000,10000].结果保留二位小数
Input
N个点 ,N个点的坐标
Output
连接它们的最短路径的长度
Sample Input
5 ---------------5个点
0 0 ---------------5个点点的坐标
0 1
1 1
1 0
0.5 0.5
Sample Output
2.83
解析
这道题一看就是最小生成树,有两种方法,分别为
普里姆算法(prim)
和
克鲁斯卡尔(kruskal)
本题解使用的是 prim
Prim算法采用与Dijkstra、Bellman-Ford算法一样的“蓝白点”思想:白点代表已经进入最小生成树的点,蓝点代表未进入最小生成树的点。
难点
题目给出的可能是小数,所以就有了我们的读入方式
aj[i][1]储存x坐标,a[j][2]储存y坐标
for(int i=1;i<=n;i++)scanf("%lf%lf",&aj[i][1],&aj[i][2]);
以及我们的计算距离公式,原理是勾股定理
sqrt((abs(aj[i][1]-aj[j][1]))*(abs(aj[i][1]-aj[j][1]))+(abs(aj[i][2]-aj[j][2]))*(abs(aj[i][2]-aj[j][2])));
代码
#include<cmath>
#include<stdio.h>
#include<iostream>
using namespace std;
int n,u[10005],o,p,q;
double ans,minn[10005],aj[10005][3],a[10005][10005];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%lf%lf",&aj[i][1],&aj[i][2]); //神奇的读入
for(int i=1;i<=n;i++){ //神奇的处理
for(int j=1;j<n;j++){
a[i][j]=sqrt((abs(aj[i][1]-aj[j][1]))*(abs(aj[i][1]-aj[j][1]))+(abs(aj[i][2]-aj[j][2]))*(abs(aj[i][2]-aj[j][2])));
a[j][i]=a[i][j];
}
}
memset(minn,0x7f,sizeof(minn)); //愉快地套我们的模板,解析链接在上面
minn[1]=0;
memset(u,true,sizeof(u));
for(int i=1;i<=n;i++){
o=false;
for(int j=1;j<=n;j++)
if(u[j] and (minn[j]<minn[o]))
o=j;
u[o]=0;
for(int j=1;j<=n;j++)
if(u[j] and (a[o][j]<minn[j])){
minn[j]=a[o][j];
}
}
for(int i=1;i<=n;i++)
ans+=minn[i];
printf("%.2lf",ans);
return 0;
}
[图论]剑鱼行动:prim的更多相关文章
- [图论]剑鱼行动:kruskal
剑鱼行动 目录 剑鱼行动 Description Input Output Sample Input Sample Output 解析 难点 代码 Description 给出N个点的坐标,对它们建立 ...
- 数据结构之 图论---最小生成树(prim + kruskal)
图结构练习——最小生成树 Time Limit: 1000MS Memory limit: 65536K 题目描述 有n个城市,其中有些城市之间可以修建公路,修建不同的公路费用是不同的.现在我们想知 ...
- 图论——最小生成树:Prim算法及优化、Kruskal算法,及时间复杂度比较
最小生成树: 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边.简单来说就是有且仅有n个点n-1条边的连通图. 而最小生成树就是最小权 ...
- [图论]最短网络:prim
最短网络 目录 最短网络 Description Input Output Sample Input Sample Output 解析 代码 Description 农民约翰被选为他们镇的镇长!他其中 ...
- acm算法模板(2)
数学问题: 1.精度计算——大数阶乘 2.精度计算——乘法(大数乘小数) 3.精度计算——乘法(大数乘大数) 4.精度计算——加法 5.精度计算——减法 6.任意进制转换 7.最大公约数.最小公倍数 ...
- kuangbin带你飞 最短路 题解
求一个图最短路边的办法.好像下面的那个有问题.单向边和双向边一定是有区别的.这个比较容易.参照该文的最短路网络流题目和连通图题目一题求最短路关节边 另外上述2个题目的代码好像有问题. 在UVALIVE ...
- [转载]OI省选算法汇总
简单列了一点 1.1 基本数据结构 数组 链表,双向链表 队列,单调队列,双端队列 栈,单调栈 1.2 中级数据结构 堆 并查集与带权并查集 hash 表 自然溢出 双hash 1.3 高级数据结构 ...
- Note_4.9
2019/4/9 奇奇怪怪的笔记 关于代码,基本上是现写的,可能连编译都过不了 因为是简单算法场,所以就很不走心了昂,/小纠结 图论相关 最小生成树 prim,kruskal 最小生成树的切割性质 ...
- OI省选算法汇总及学习计划(转)
1.1 基本数据结构 数组(√) 链表(√),双向链表(√) 队列(√),单调队列(√),双端队列(√) 栈(√),单调栈(√) 1.2 中级数据结构 堆(√) 并查集与带权并查集(√) hash 表 ...
随机推荐
- js IdleDetector 检测用户是否处于活动状态API
btn.addEventListener("click", async () => { try { const state = await Notification.requ ...
- py 使用win32 api
http://timgolden.me.uk/pywin32-docs/contents.html https://docs.python.org/3/library/ctypes.html#ctyp ...
- 06.numpy聚合运算
>>> import numpy as np >>> L = np.random.random(100) >>> L array([0.82846 ...
- 【HTB靶场系列】靶机Carrier的渗透测试
出品|MS08067实验室(www.ms08067.com) 本文作者:大方子(Ms08067实验室核心成员) Hack The Box是一个CTF挑战靶机平台,在线渗透测试平台.它能帮助你提升渗透测 ...
- canal数据同步的环境配置
canal数据同步的环境配置:(适用于mysql) 前提:在linux和windows系统的mysql数据库中创建相同结构的数据库和表,我的linux中mysql是用docker实现的(5.7版本), ...
- Mysql训练:两个表中使用 Select 语句会导致产生 笛卡尔乘积 ,两个表的前后顺序决定查询之后的表顺序
力扣:超过经理收入的员工 Employee 表包含所有员工,他们的经理也属于员工.每个员工都有一个 Id,此外还有一列对应员工的经理的 Id. +----+-------+--------+----- ...
- vue:子组件通过调用父组件的方法的方式传参
在本案例中,由于子组件通过调用父组件的方法的方式传参,从而实现修改父组件data中的对象,所以需要啊使用$forceUpdate()进行强制刷新 父组件: provide() { return { s ...
- WPF权限控制框架——【4】抛砖引玉
写第一篇"权限控制框架"系列博客是在2021-01-29,在这不到一个月的时间里,收集自己零碎的时间,竟然写出了一个"麻雀虽小,五脏俱全"的权限控制框架:对于一 ...
- 第七届蓝桥杯JavaB组——第7题剪邮票
题目: 剪邮票 如[图1.jpg], 有12张连在一起的12生肖的邮票. 现在你要从中剪下5张来,要求必须是连着的. (仅仅连接一个角不算相连) 比如,[图2.jpg],[图3.jpg]中,粉红色所示 ...
- Kubernetes-6.Service
docker version:20.10.2 kubernetes version:1.20.1 本文概述Kubernetes Service的基本原理和使用. 服务 Service是将运行在一组Po ...