import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次的大小
batch_size = 64
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size #定义三个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
keep_prob=tf.placeholder(tf.float32) # 784-1000-500-10
W1 = tf.Variable(tf.truncated_normal([784,1000],stddev=0.1))
b1 = tf.Variable(tf.zeros([1000])+0.1)
L1 = tf.nn.tanh(tf.matmul(x,W1)+b1)
L1_drop = tf.nn.dropout(L1,keep_prob) W2 = tf.Variable(tf.truncated_normal([1000,500],stddev=0.1))
b2 = tf.Variable(tf.zeros([500])+0.1)
L2 = tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)
L2_drop = tf.nn.dropout(L2,keep_prob) W3 = tf.Variable(tf.truncated_normal([500,10],stddev=0.1))
b3 = tf.Variable(tf.zeros([10])+0.1)
prediction = tf.nn.softmax(tf.matmul(L2_drop,W3)+b3) #交叉熵
loss = tf.losses.softmax_cross_entropy(y,prediction)
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess:
sess.run(init)
for epoch in range(31):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.5}) test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
train_acc = sess.run(accuracy,feed_dict={x:mnist.train.images,y:mnist.train.labels,keep_prob:1.0})
print("Iter " + str(epoch) + ",Testing Accuracy " + str(test_acc) +",Training Accuracy " + str(train_acc))
Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
Iter 0,Testing Accuracy 0.9201,Training Accuracy 0.91234547
Iter 1,Testing Accuracy 0.9256,Training Accuracy 0.9229636
Iter 2,Testing Accuracy 0.9359,Training Accuracy 0.9328182
Iter 3,Testing Accuracy 0.9375,Training Accuracy 0.93716365
Iter 4,Testing Accuracy 0.9408,Training Accuracy 0.9411273
Iter 5,Testing Accuracy 0.9407,Training Accuracy 0.94365454
Iter 6,Testing Accuracy 0.9472,Training Accuracy 0.9484909
Iter 7,Testing Accuracy 0.9472,Training Accuracy 0.9502
Iter 8,Testing Accuracy 0.9516,Training Accuracy 0.95336366
Iter 9,Testing Accuracy 0.9522,Training Accuracy 0.95552725
Iter 10,Testing Accuracy 0.9525,Training Accuracy 0.95632726
Iter 11,Testing Accuracy 0.9566,Training Accuracy 0.9578909
Iter 12,Testing Accuracy 0.9574,Training Accuracy 0.9606182
Iter 13,Testing Accuracy 0.9573,Training Accuracy 0.96107274
Iter 14,Testing Accuracy 0.9587,Training Accuracy 0.9614546
Iter 15,Testing Accuracy 0.9581,Training Accuracy 0.9616727
Iter 16,Testing Accuracy 0.9599,Training Accuracy 0.96369094
Iter 17,Testing Accuracy 0.9601,Training Accuracy 0.96403635
Iter 18,Testing Accuracy 0.9618,Training Accuracy 0.9658909
Iter 19,Testing Accuracy 0.9608,Training Accuracy 0.9652
Iter 20,Testing Accuracy 0.9618,Training Accuracy 0.96607274
Iter 21,Testing Accuracy 0.9634,Training Accuracy 0.96794546
Iter 22,Testing Accuracy 0.9639,Training Accuracy 0.96836364
Iter 23,Testing Accuracy 0.964,Training Accuracy 0.96965456
Iter 24,Testing Accuracy 0.9644,Training Accuracy 0.9693091
Iter 25,Testing Accuracy 0.9647,Training Accuracy 0.9703818
Iter 26,Testing Accuracy 0.9639,Training Accuracy 0.9702
Iter 27,Testing Accuracy 0.9651,Training Accuracy 0.9708909
Iter 28,Testing Accuracy 0.9666,Training Accuracy 0.9711818
Iter 29,Testing Accuracy 0.9644,Training Accuracy 0.9710364
Iter 30,Testing Accuracy 0.9659,Training Accuracy 0.97205454

8.Dropout的更多相关文章

  1. 在RNN中使用Dropout

    dropout在前向神经网络中效果很好,但是不能直接用于RNN,因为RNN中的循环会放大噪声,扰乱它自己的学习.那么如何让它适用于RNN,就是只将它应用于一些特定的RNN连接上.   LSTM的长期记 ...

  2. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  3. 正则化方法:L1和L2 regularization、数据集扩增、dropout

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  4. 深度学习(dropout)

    other_techniques_for_regularization 随手翻译,略作参考,禁止转载 www.cnblogs.com/santian/p/5457412.html Dropout: D ...

  5. Deep learning:四十一(Dropout简单理解)

    前言 训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择.Dropout是hintion最近2年提出的,源于其文章Improving neural n ...

  6. 简单理解dropout

    dropout是CNN(卷积神经网络)中的一个trick,能防止过拟合. 关于dropout的详细内容,还是看论文原文好了: Hinton, G. E., et al. (2012). "I ...

  7. [转]理解dropout

    理解dropout 原文地址:http://blog.csdn.net/stdcoutzyx/article/details/49022443     理解dropout 注意:图片都在github上 ...

  8. [CS231n-CNN] Training Neural Networks Part 1 : parameter updates, ensembles, dropout

    课程主页:http://cs231n.stanford.edu/ ___________________________________________________________________ ...

  9. 正则化,数据集扩增,Dropout

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  10. [Neural Networks] Dropout阅读笔记

    多伦多大学Hinton组 http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf 一.目的 降低overfitting的风险 二.原理 ...

随机推荐

  1. DRF视图-5个扩展类以及GenericAPIView基类

    视图 5个视图扩展类 视图拓展类的作用: 提供了几种后端视图(对数据资源进行曾删改查)处理流程的实现,如果需要编写的视图属于这五种,则视图可以通过继承相应的扩展类来复用代码,减少自己编写的代码量. 这 ...

  2. fdisk中参数配置说明表

    命令 描述 a 设置活动分区标志 b 编辑BSD Unix系统用的磁盘标签 c 设置DOS兼容标志 d 删除分区 l 显示可用的分区类型 m 显示命令选项(帮助) n 添加一个新的分区 o 创建DOS ...

  3. 论文阅读 | ERNIE: Enhanced Representation through Knowledge Integration

    摘要 知识加强的语义表示模型. knowledge masking strategies  :  entity-level  masking   / phrase-level masking    实 ...

  4. MySQL_数据查询

    目录 1.查看数据的两种方法 2.查看数据并进行筛选(where) 3.不查看重复记录(distinct),空值,非空值 5.查看指定行(limit) 6.模式匹配(like) regexp 6.范围 ...

  5. VMware一些概念

    物理机:真真实实存在的机器,有操作系统.内存.硬盘.网卡. 虚拟机:vmware虚拟出来的,和物理机一样有操作系统.内存.硬盘.网卡. 虚拟机的网络连接的桥接模式.NAT模式.仅主机模式简单解说:  ...

  6. hdoj2196(树形dp,树的直径)

    题目链接:https://vjudge.net/problem/HDU-2196 题意:给出一棵树,求每个结点可以到达的最远距离. 思路: 如果求得是树上最长距离,两次bfs就行.但这里求的是所有点的 ...

  7. Thinkphp+Ajax带关键词搜索列表无刷新分页实例

    Thinkphp+Ajax带关键词搜索列表无刷新分页实例,两个查询条件,分页和搜索关键字,懂的朋友还可以添加其他分页参数. 搜索#keyword和加载内容区域#ajax_lists <input ...

  8. windows 控制台默认为UTF-8显示的方法

    这里需要先了解些内容: CHCP CHCP是MS DOS中的命令,用来显示或设置活动代码页编号的.用法是: CHCP [nnn] 其中nnn指定的是代码页的编号.这个参数是可选的,在命令行下如果不指定 ...

  9. 怎样理解 Vue 中的 v-if 和 v-show ?

    1. v-if 实现了真正的 条件渲染, 条件为真时, 节点被创建, 相应的监听函数也会生效, 条件为假时, 节点被销毁, 触发事件监听函数不会生效. 而 v-show 只是使用了 display:n ...

  10. zookeeper初识

    ZOOKEEPER是为分布式系统提供高性能的协调工具 角色: 1.领导者(leader):负责进行投票的发起和决议,更新系统状态2.学习者(learner):包括跟随者(follower)和观察者(o ...