Hybrid Crystals

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 300    Accepted Submission(s): 179

Problem Description

> Kyber crystals, also called the living crystal or simply the kyber, and known as kaiburr crystals in ancient times, were rare, Force-attuned crystals that grew in nature and were found on scattered planets across the galaxy. They were used by the Jedi and the Sith in the construction of their lightsabers. As part of Jedi training, younglings were sent to the Crystal Caves of the ice planet of Ilum to mine crystals in order to construct their own lightsabers. The crystal's mix of unique lustre was called "the water of the kyber" by the Jedi. There were also larger, rarer crystals of great power and that, according to legends, were used at the heart of ancient superweapons by the Sith.
>
> — Wookieepedia
Powerful, the Kyber crystals are. Even more powerful, the Kyber crystals get combined together. Powered by the Kyber crystals, the main weapon of the Death Star is, having the firepower of thousands of Star Destroyers.
Combining Kyber crystals is not an easy task. The combination should have a specific level of energy to be stablized. Your task is to develop a Droid program to combine Kyber crystals.
Each crystal has its level of energy (i-th crystal has an energy level of ai). Each crystal is attuned to a particular side of the force, either the Light or the Dark. Light crystals emit positive energies, while dark crystals emit negative energies. In particular,
* For a light-side crystal of energy level ai, it emits +ai units of energy.
* For a dark-side crystal of energy level ai, it emits −ai units of energy.
Surprisingly, there are rare neutral crystals that can be tuned to either dark or light side. Once used, it emits either +ai or −ai units of energy, depending on which side it has been tuned to.
Given n crystals' energy levels ai and types bi (1≤i≤n), bi=N means the i-th crystal is a neutral one, bi=L means a Light one, and bi=D means a Dark one. The Jedi Council asked you to choose some crystals to form a larger hybrid crystal. To make sure it is stable, the final energy level (the sum of the energy emission of all chosen crystals) of the hybrid crystal must be exactly k.
Considering the NP-Hardness of this problem, the Jedi Council puts some additional constraints to the array such that the problem is greatly simplified.
First, the Council puts a special crystal of a1=1,b1=N.
Second, the Council has arranged the other n−1 crystals in a way that

ai≤∑j=1i−1aj[bj=N]+∑j=1i−1aj[bi=L∩bj=L]+∑j=1i−1aj[bi=D∩bj=D](2≤i≤n).

[cond] evaluates to 1 if cond holds, otherwise it evaluates to 0.
For those who do not have the patience to read the problem statements, the problem asks you to find whether there exists a set S⊆{1,2,…,n} and values si for all i∈S such that

∑i∈Sai∗si=k,

where si=1 if the i-th crystal is a Light one, si=−1 if the i-th crystal is a Dark one, and si∈{−1,1} if the i-th crystal is a neutral one.

Input

The first line of the input contains an integer T, denoting the number of test cases.
For each test case, the first line contains two integers n (1≤n≤103) and k (|k|≤106).
The next line contains n integer a1,a2,...,an (0≤ai≤103).
The next line contains n character b1,b2,...,bn (bi∈{L,D,N}).

Output

If there exists such a subset, output "yes", otherwise output "no".

Sample Input


2

5 9
1 1 2 3 4
N N N N N 6 -10
1 0 1 2 3 1
N L L L L D

Sample Output


yes
no

Source

2017 Multi-University Training Contest - Team 8

题意:

纯粹的阅读题

给定一个数字串,L为正数,D为负数,N既可以做正数,也可以做负数,ai符合上面的条件,且a1一定为1N,求是否有一个子集,和为k

思路:

这道题中的数能组成的数构成了一个连续区间.

一开始只有 a1a_1a​1​​ 的时候能够构成 [−1,1][-1, 1][−1,1] 中的所有整数.

如果一堆数能够构成 [−a,b][-a, b][−a,b] 中的所有整数, 这时候来了一个数 xxx. 如果 xxx 只能取正值的话, 如果有 x≤bx \le bx≤b, 那么就能够构成 [−a,b+x][-a, b+x][−a,b+x] 的所有整数.

如果 xxx 只能取负值, 如果有 x≤yx \le yx≤y, 那么就能构成 [−a−x,b][-a-x, b][−a−x,b] 的所有整数.

如果 xxx 可正可负, 如果有 x≤min(x,y)x \le min(x, y)x≤min(x,y), 那么就能构成 [−a−x,b+x][-a-x, b+x][−a−x,b+x] 中的所有整数.

然后题目中那个奇怪的不等式就保证了上面的"如果有"的条件.

代码:

  1 /*
2 * @FileName: D:\代码与算法\2017训练比赛\多校8\1008-pro.cpp
3 * @Author: Pic
4 * @Date: 2017-08-17 20:52:59
5 * @Last Modified time: 2017-08-17 21:10:50
6 */
7 #include <bits/stdc++.h>
8 using namespace std;
9 const int MAXN=1000+30;
10 int a[MAXN];
11 int main()
12 {
13 //freopen("data.in","r",stdin);
14 int t;
15 scanf("%d",&t);
16 while(t--){
17 int n,k;
18 scanf("%d%d",&n,&k);
19 for(int i=0;i<n;i++){
20 scanf("%d",&a[i]);
21 }
22 int sumL=0,sumN=0,sumD=0;
23 getchar();
24 char ch;
25 for(int i=0;i<n;i++){
26 ch=getchar();
27 getchar();
28 if(ch=='L'){
29 sumL+=a[i];
30 }
31 else if(ch=='D'){
32 sumD+=a[i];
33 }
34 else if(ch=='N'){
35 sumN+=a[i];
36 }
37 }
38 if(k<=sumL+sumN&&k>=-1*(sumN+sumD)){
39 printf("yes\n");
40 }
41 else{
42 printf("no\n");
43 }
44 }
45 }

HDU6140--Hybrid Crystals(思维)的更多相关文章

  1. HDU 6140 17多校8 Hybrid Crystals(思维题)

    题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...

  2. HDU 6140 Hybrid Crystals

    Hybrid Crystals Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  3. 2017ACM暑期多校联合训练 - Team 8 1008 HDU 6140 Hybrid Crystals (模拟)

    题目链接 Problem Description Kyber crystals, also called the living crystal or simply the kyber, and kno ...

  4. 【2017 Multi-University Training Contest - Team 8】Hybrid Crystals

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6140 [Description] 等价于告诉你有n个物品,每个物品的价值为-a[i]或a[i],或 ...

  5. 2017 Multi-University Training Contest - Team 8

    HDU6140 Hybrid Crystals 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6140 题目意思:这场多校是真的坑,题目爆长,心态爆炸, ...

  6. 浅谈Hybrid技术的设计与实现第三弹——落地篇

    前言 接上文:(阅读本文前,建议阅读前两篇文章先) 浅谈Hybrid技术的设计与实现 浅谈Hybrid技术的设计与实现第二弹 根据之前的介绍,大家对前端与Native的交互应该有一些简单的认识了,很多 ...

  7. Hybrid App开发者一定不要错过的框架和工具///////////z

    ionicFramework 我是hybrid app的忠实粉丝和大力倡导者,从 新浪移动云开始就不断的寻找能帮助Web程序员开发出漂亮又好用的UI层框架.在历经了jqmobile.sencha to ...

  8. Hybrid App开发者一定不要错过的框架和工具

    最近开始给网站的移动版本做技术选型,发现了很多好玩的东西,写出来给大家分享下. ionicFramework 我是hybrid app的忠实粉丝和大力倡导者,从 新浪移动云开始就不断的寻找能帮助Web ...

  9. 【Hybrid App】关于Hybrid App技术解决方案的选择

    [引言]近年来随着移动设备类型的变多,操作系统的变多,用户需求的增加,对于每个项目启动前,大家都会考虑到的成本,团队成员,技术成熟度,时间,项目需求等一堆的因素.因此,开发App的方案已经变得越来越多 ...

随机推荐

  1. axios配置

    import axios, { isCancel } from 'axios' import { md5 } from 'vux' import util from '@/libs/util' imp ...

  2. vue和react区别

    vue和react区别  

  3. 对接外网post,get接口封装类库

    public class HttpHelper { public static string GetAsync(string url)  { HttpWebRequest request = WebR ...

  4. 初识python之了解程序设计基本方法

    对于用计算机解决一些问题,这里有一个程序设计的基本方法,主要分为六个步骤,其分析和实现过程如下: (1)分析问题:利用计算机解决问题需要结合计算机技术的发展水平和人类对问题的思考程度,在特定技术和社会 ...

  5. PHP获取某段文字作为标题

    <?php mb_internal_encoding('utf-8'); // 提取文字标题,多余文字用省略号替换 $arr=[ '用心用情用功,进行无愧于时代的文艺创造', '一图了解第二届一 ...

  6. string字符串长度和字节长度问题

    string str = "abcdef 安安安"; int i = str.Length; byte[] bt = System.Text.Encoding.Default.Ge ...

  7. react——使用this.setState({ })修改state状态值

    使用this.setState({  }) 还可以修改后追加传的参数 效果如下: this.setState({  })方法是异步的

  8. 在已有lnmp环境的基础上安装PHP7

    Centos7.6系统 已经安装lnmp一键环境 想装个apache跑php7, apache安装在这 https://www.cnblogs.com/lz0925/p/11227063.html 要 ...

  9. 第八章· Redis API 开发

    Redis 开发 1.源码安装Python环境 Python官网:https://www.python.org/ #下载Python3.6.4安装包 [root@db03 ~]# wget https ...

  10. goaccess安装和使用

    安装依赖 $ sudo apt-get install libncursesw5-dev $ wget https://github.com/maxmind/geoip-api-c/releases/ ...