『Codeforces 1186E 』Vus the Cossack and a Field (性质+大力讨论)
Description
给出一个$n\times m$的$01$矩阵$A$。
记矩阵$X$每一个元素取反以后的矩阵为$X'$,(每一个cell 都01倒置)
定义对$n \times m$的矩阵$A$进行一次变幻操作,变幻后矩阵的大小是$2n \times 2m$的。
具体来说,我们会把$A$复制一份到$A$的右下方,计算$A'$并放置在$A$的正右方和正下方。
设连续操作$n$的结果是$f^n(A)$ 即 $f^n(A) = \left\{\begin{matrix} f(f^{n-1}(A)) & (n\geq 2)\\ \begin{Bmatrix} A & A' \\ A' & A \end{Bmatrix} & (n=1)\\A & (n = 0)\end{matrix}\right.$
设矩阵$L = f^{\infty} (A)$ ,给出$Q$个询问,$x1,y1,x2,y2$,求出$L$中子矩阵的和。
对于$100\%$的数据满足$1 \leq n,m \leq 10^3 , 1 \leq Q \leq 10^6 , 1 \leq x1\leq x2 \leq 10^9 , 1 \leq y1\leq y2 \leq 10^9$
Idea & Solution
我们不妨对于每个矩阵整体考虑。设没有进行翻转运算的矩阵为$0$,否则为$1$
必然是长这样的:$\begin{matrix} 0 & 1 & 1& 0 & 1 & 0 & 0 & 1& ...\\ 1 & 0 & 0 & 1 & 0 &1 & 1 & 0 &...\\ 1 & 0 & 0 & 1 & 0 &1 & 1 & 0 & ...\\ 0 & 1 & 1& 0 & 1 & 0 & 0 & 1& ... \\ &&&&...\end{matrix}$
我们会显然的发现第一个数字为$0$的序列都相同,第一个数字为$1$的序列都相同。
而两个序列恰好取反,于是我们可以尝试寻找第一行的性质。
如果我们从$0$开始编号,那么起始点就是$0$,其值为$0$.
对于第1行的第$i$个数字,必然是某一次扩展后产生的,我们会发现,一次扩展会对第一行的宽度$\times 2$
所以,第$i$个数字是$01$是和$Highestbit(i)$相反的,所以我们可以归纳一下发现,对于第$1$行第$i$个元素如果二进制上的$1$的个数为偶数那么就是$0$否则就是$1$.
同时我们会发现纵向和横向的情况一模一样,所以可以进一步推论,$countbit(x) + countbit(y) $为偶数那么就是$0$否则就是$1$.
我们可能会发现,对于二维前缀和上的一个矩阵,$0$的个数和$1$的个数大致相等,可以分$x , y$坐标的奇偶性讨论$4$种可能即可计算。
最后使用二维前缀和求子矩阵和。
复杂度是$O(nm + T)$
# include<bits/stdc++.h>
# define int long long
using namespace std;
const int N=;
int s0[N][N],s1[N][N],a[N][N],b[N][N];
int n,m,q;
int count(int x) { int ret=;while(x){if(x&)ret++;x>>=;}return ret;}
pair<int,int> find(int x,int y) { return make_pair((x-)/n,(y-)/m);}
int check(int x,int y) { return (count(x)+count(y))&;}
inline int read()
{
int X=,w=; char c=;
while(c<''||c>'') {w|=c=='-';c=getchar();}
while(c>=''&&c<='') X=(X<<)+(X<<)+(c^),c=getchar();
return w?-X:X;
}
void write(int x)
{
if (x>) write(x/);
putchar(''+x%);
}
int solve(int x,int y)
{
if (x<= || y<=) return ;
pair<int,int>tmp=find(x,y); int cx = tmp.first, cy = tmp.second;
if ((cx&) && (cy&)) {
int ret = ((cx*cy-)>>)*n*m,h=x-cx*n,w=y-cy*m;
ret=ret+h*((cy-)>>)*m+w*((cx-)>>)*n;
if (check(cx,cy)==) ret+=s0[h][w]; else ret+=s1[h][w];
if (cx>= && cy>=) { if (check(cx-,cy-)==) ret+=s0[n][m]; else ret+=s1[n][m]; }
if (cx>=) { if (check(cx-,cy)==) ret+=s0[n][w]; else ret+=s1[n][w]; }
if (cy>=) { if (check(cx,cy-)==) ret+=s0[h][m]; else ret+=s1[h][m]; }
return ret;
} else if ((cx&) && !(cy&)) {
int ret = (cx*cy>>)*n*m,h=x-cx*n,w=y-cy*m;
ret=ret+h*(cy>>)*m+w*((cx-)>>)*n;
if (check(cx,cy)==) ret+=s0[h][w]; else ret+=s1[h][w];
if (cx>=) { if (check(cx-,cy)==) ret+=s0[n][w]; else ret+=s1[n][w]; }
return ret;
} else if (!(cx&) && (cy&)) {
int ret = (cx*cy>>)*n*m,h=x-cx*n,w=y-cy*m;
ret=ret+h*((cy-)>>)*m+w*(cx>>)*n;
if (check(cx,cy)==) ret+=s0[h][w]; else ret+=s1[h][w];
if (cy>=) { if (check(cx,cy-)==) ret+=s0[h][m]; else ret+=s1[h][m]; }
return ret;
} else if (!(cx&) && !(cy&)) {
int ret = (cx*cy>>)*n*m,h=x-cx*n,w=y-cy*m;
ret=ret+h*(cy>>)*m+w*(cx>>)*n;
if (check(cx,cy)==) ret+=s0[h][w]; else ret+=s1[h][w];
return ret;
}
}
signed main()
{
n=read();m=read();q=read();
for (int i=;i<=n;i++) {
for (int j=;j<=m;j++) {
char c=; while (c!=''&&c!='') c=getchar();
a[i][j]=(c==''); b[i][j]=-a[i][j];
}
}
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
s0[i][j]=s0[i-][j]+s0[i][j-]-s0[i-][j-]+a[i][j],
s1[i][j]=s1[i-][j]+s1[i][j-]-s1[i-][j-]+b[i][j];
while (q--) {
int x1=read(),y1=read(),x2=read(),y2=read();
int ans = solve(x2,y2)-solve(x2,y1-)-solve(x1-,y2)+solve(x1-,y1-);
write(ans); putchar('\n');
}
return ;
}
『Codeforces 1186E 』Vus the Cossack and a Field (性质+大力讨论)的更多相关文章
- E. Vus the Cossack and a Field (求一有规律矩形区域值) (有一结论待证)
E. Vus the Cossack and a Field (求一有规律矩形区域值) 题意:给出一个原01矩阵,它按照以下规则拓展:向右和下拓展一个相同大小的 0 1 分别和原矩阵对应位置相反的矩阵 ...
- CodeForces - 1186 C. Vus the Cossack and Strings (异或)
Vus the Cossack has two binary strings, that is, strings that consist only of "0" and &quo ...
- Codeforces F. Vus the Cossack and Numbers(贪心)
题目描述: D. Vus the Cossack and Numbers Vus the Cossack has nn real numbers aiai. It is known that the ...
- Vus the Cossack and Strings(Codeforces Round #571 (Div. 2))(大佬的位运算实在是太强了!)
C. Vus the Cossack and Strings Vus the Cossack has two binary strings, that is, strings that consist ...
- Codeforces Round #571 (Div. 2)-D. Vus the Cossack and Numbers
Vus the Cossack has nn real numbers aiai. It is known that the sum of all numbers is equal to 00. He ...
- 似魔鬼的 『 document.write 』
在平时的工作中,楼主很少用 document.write 方法,一直觉得 document.write 是个危险的方法.楼主不用,并不代表别人不用,最近给维护的项目添了一点代码,更加深了我对 &quo ...
- 拾遗:『Linux Capability』
『Linux Capability』 For the purpose of performing permission checks, traditional UNIX implementations ...
- 『创意欣赏』20款精致的 iOS7 APP 图标设计
这篇文章给大家分享20款精致的 iOS7 移动应用程序图标,遵循图形设计的现代潮流,所有图标都非常了不起,给人惊喜.通过学习这些移动应用程序图标,设计人员可以提高他们的创作,使移动用户界面看起来更有趣 ...
- 『设计前沿』14款精致的国外 iOS7 图标设计示例
每天都有大量的应用程序发布到 iOS App Store 上,在数量巨大的应用中想要引起用户的主要,首要的就是独特的图标设计.这篇文章收集了14款精致的国外 iOS7 图标设计示例,希望能带给你设计灵 ...
随机推荐
- 在 jupyterlab 和 jupyter notebook 中集成conda虚拟环境
在jupyterlab中切换虚拟环境使用jupyter-conda包,参考链接:https://pypi.org/project/jupyter-conda/ Install Requirements ...
- Linux的一个后门引发对PAM的探究
转自http://www.91ri.org/16803.html 1.1 起因 今天在搜索关于Linux下的后门姿势时,发现一条命令如下:软链接后门: 1 ln -sf /usr/sbin/ssh ...
- Open-falcon监控
https://book.open-falcon.org/zh_0_2/ 本文档记录了CentOS7.4下open-falcon-v2监控系统的部署流程,以及一些需要注意的地方. 环境准备 安装Red ...
- Nmap 常用命令语法
Nmap是一个网络连接端扫描软件,用来扫描网上电脑开放的网络连接端,确定哪些服务运行在哪些连接端,并且推断计算机运行哪个操作系统,正如大多数被用于网络安全的工具,Nmap也是不少黑客及骇客爱用的工具, ...
- UI语言杂集
最适合做 GUI 的是 DSL 或者 XML(以及 XML 的扩展)之类的标记语言,而不是编程语言. 例如 Qt 的 QML,Android 的 XML 或者 WPF 的 XAML 以及大家都再熟悉不 ...
- 【原创】大叔经验分享(61)kudu rebalance报错
kudu rebalance命令报错 terminate called after throwing an instance of 'std::regex_error' what(): regex_e ...
- python 获取当前目录下的文件目录和文件名
python 获取当前目录下的文件目录和文件名 os模块下有两个函数: os.walk() os.listdir() 1 # -*- coding: utf-8 -*- 2 3 import os ...
- 移动端tab切换时下划线的滑动效果
1.当前 tab 出现下划线的同时,前一个下划线同时消失(出现方向与消失方向保持一致),伴随过渡效果. <!DOCTYPE html><html lang="en" ...
- 2、screen工具
1.背景 系统管理员经常需要SSH 或者telent 远程登录到Linux 服务器,经常运行一些需要很长时间才能完成的任务,比如系统备份.ftp 传输等等.通常情况下我们都是为每一个这样的任务开一个远 ...
- IDEA利用mybatis-generator自动生成dao和mapper
pom.xml配置 <properties> <java.version>1.8</java.version> <mybatis-generator-core ...