The Nth Item

思路:

先用特征根法求出通向公式,然后通向公式中出现了\(\sqrt{17}\),这个可以用二次剩余求出来,然后可以O(\(log(n)\))求出。

但是还不够,我们先对\(n\)欧拉降幂,然后求base为\(\sqrt{1e9}\)的快速幂,预处理一些东西,就可以类似O(1)求出了。

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define y1 y11
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define pdd pair<double, double>
#define mem(a, b) memset(a, b, sizeof(a))
#define debug(x) cerr << #x << " = " << x << "\n";
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
//head const int MOD = 998244353;
const LL fsqrt17 = 473844410;
const LL sqrt17 = MOD-fsqrt17;
const LL inv2 = (MOD+1)/2;
const LL invsqrt17 = 438914993;
const int N = 4e4 + 5;
LL p[N], pp[N], P[N], PP[N], q, n;
LL f(LL n) {
return (p[n%(N-1)]*P[n/(N-1)])%MOD;
}
LL F(LL n) {
return (pp[n%(N-1)]*PP[n/(N-1)])%MOD;
}
int main() {
p[0] = pp[0] = 1;
for (int i = 1; i < N; ++i) p[i] = p[i-1]*(3+sqrt17)%MOD*inv2%MOD, pp[i] = pp[i-1]*(3+fsqrt17)%MOD*inv2%MOD;
P[0] = PP[0] = 1;
for (int i = 1; i < N; ++i) {
P[i] = P[i-1]*p[N-1]%MOD;
PP[i] = PP[i-1]*pp[N-1]%MOD;
}
scanf("%lld %lld", &q, &n);
LL res = 0;
for (int i = 1; i <= q; ++i) {
LL ans = -(f(n%(MOD-1))-F(n%(MOD-1)))*invsqrt17%MOD;
ans = (ans + MOD) % MOD;
res ^= ans;
n ^= ans*ans;
}
printf("%lld\n", res);
return 0;
}

The 2019 Asia Nanchang First Round Online Programming Contest The Nth Item的更多相关文章

  1. The 2019 Asia Nanchang First Round Online Programming Contest

    传送门 A. Enju With math problem 题意: 给出\(a_1,\cdots,a_{100}\),满足\(a_i\leq 1.5*10^8\). 现在问是否存在一个\(pos\), ...

  2. The 2019 Asia Nanchang First Round Online Programming Contest C(cf原题,线段树维护矩阵)

    题:https://nanti.jisuanke.com/t/41350 分析:先将字符串转置过来 状态转移,因为只有5个状态,所以 i 状态到 j 状态的最小代价就枚举[i][k]->[k][ ...

  3. The 2019 Asia Nanchang First Round Online Programming Contest E. Magic Master

    题目链接:https://nanti.jisuanke.com/t/41352 题目意思还是好理解的,看过的人不多,感觉是被通过量吓到了.其实就是个水题,反向模拟就好了, 用队列模拟,反向模拟,它要放 ...

  4. The 2019 Asia Nanchang First Round Online Programming Contest B. Fire-Fighting Hero

    题目链接:https://nanti.jisuanke.com/t/41349 题意:有一个灭火英雄,和一个灭火团队,一个人与一个团队比较. 灭火英雄到其他灭火点的最短路最大值,与一个团队到其他灭火点 ...

  5. H. The Nth Item(The 2019 Asia Nanchang First Round Online Programming Contest)

    题意:https://nanti.jisuanke.com/t/41355 给出N1,计算公式:A=F(N)Ni=Ni-1 ^ (A*A),F为类斐波那契需要矩阵快速幂的递推式. 求第k个N. 思路: ...

  6. E.Magic Master(The 2019 Asia Nanchang First Round Online Programming Contest)

    直接模拟orhttps://blog.csdn.net/liufengwei1/article/details/100643831

  7. The 2019 Asia Nanchang First Round Online Programming Contest(B,E)

    B. Fire-Fighting Hero 题意:一个消防员和多个队伍比赛,比较所有地方的最短路的最大值,消防员最后的值要乘1/C,求胜利的一方的最短路的最大值是多少.一直没读懂正确题意(内疚). 思 ...

  8. The 2019 Asia Nanchang First Round Online Programming Contest B Fire-Fighting Hero(阅读理解)

    This is an era of team success, but also an era of heroes. Throughout the ages, there have been nume ...

  9. The 2019 Asia Nanchang First Round Online Programming Contest C. Hello 2019(动态dp)

    题意:要找到一个字符串里面存在子序列9102 而不存在8102 输出最小修改次数 思路:对于单次询问 我们可以直接区间dpOn求出最小修改次数 但是对于多次询问 我在大部分题解看到的解释一般是用线段树 ...

随机推荐

  1. 内层元素设置position:relative后父元素overflow:hidden overflow:scroll失效 解决方法

    内层元素设置position:relative后父元素overflow:hidden overflow:scroll 都失效 解决方法:在position:relative的外层父容器加positio ...

  2. 利用eclipse导入jar包到本地仓库

    如果不也不想用mvn install xxxxxx 后面跟一大堆的东东,可以让eclipse替代完成导入,看下图 File------->Import 大功告成,可见eclipse还没有废掉,至 ...

  3. WXS --注释

  4. IP通信学习心得03

    三.TCP.三次握手.四次挥手 1.TCP数据包结构 注: A:序列号字段是所发字节的第一个字节的序号. B:报头最大长度为60个字节(4bits),最小为20个字节. C:  发送窗口由接收窗口决定 ...

  5. PHP LUHN算法验证银行卡

    <?php /* 16-19 位卡号校验位采用 Luhn 校验方法计算: 第一步:把信用卡号倒序(61789372994) 第二步:取出倒序后的奇数位置上的号码, 相加等到总和s1.(eg:s1 ...

  6. Zuul【工作原理】

    zuul的核心逻辑都是由一系列filter过滤器链实现的,但是filter的类型不同,执行的时机也不同,效果自然也不一样,主要特点如下: filter的类型:filter的类型,决定了它在整个filt ...

  7. STM32之中断函数

    本文做中断函数的索引,帮助我们找到中断函数名.中断函数参数以及中断服务函数他们的来源,以便我们编程. 1)如果一个工程只有一个中断,则我们可以进行两个步骤就可以了: 使能中断通道 编写中断服务函数 2 ...

  8. Docker 学习笔记(二):Dockerfile 定制镜像

    镜像的定制实际上就是定制每一层所添加的配置.文件. 如果我们可以把每一层修改.安装.构建.操作的命令都写入一个脚本,用这个脚本来构建.定制镜像,那么之前提及的无法重复的问题.镜像构建透明性的问题.体积 ...

  9. JNI创建共享内存导致JVM terminated的问题解决(segfault,shared memory,内存越界,内存泄漏,共享内存)

    此问题研究了将近一个月,最终发现由于JNI不支持C中创建共享内存而导致虚拟机无法识别这块共享内存,造成内存冲突,最终虚拟机崩溃. 注意:JNI的C部分所使用的内存也是由JVM创建并管理的,所以C创建了 ...

  10. consul客户端配置微服务实例名称和ID

    consul客户端必须配置微服务实例名称和ID,微服务启动的时候需要将名称和ID注册到注册中心,后续微服务之间调用也需要用到. 名称可以通过以下两种方式配置,优先级从高到低.两个都不配置则默认服务名称 ...